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Abstract

Existence of a monetary steady state is established in a random matching
model with divisible goods, divisible money, an arbitrary bound on individual
money holdings, and take-it-or-leave-it offers by consumers. The monetary
steady state shown to exist has nice properties: the value function, defined
on money holdings, is strictly increasing and strictly concave, and the dis-
tribution over money holdings has full support. The approach is to show
that the “limit” of the nice steady states for indivisible money, existence of
which was established in an earlier paper, as the unit of money goes to zero
is a monetary steady state for divisible money. For indivisible money, the
marginal utility of consumption at zero was assumed to be large; for divisible
money it is assumed to be large and finite.
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1 Introduction

In this paper, I study a randommatching model with divisible goods, divisible
money, an arbitrary bound on individual holdings, and take-it-or-leave-it
offers by consumers. The model is essentially the one set out by Trejos and
Wright [9] and Shi [7], which, in turn, is bases on Kiyotaki and Wright [4].
I show that there exists a monetary steady state with nice properties: the
value function, defined on money holdings, is strictly increasing and strictly
concave, and the distribution over money holdings has full support. This
extends the existence result for indivisible money established in a previous
paper (Zhu [11]).
As is well known, a matching model that allows for a large set of individual

money holdings generates endogenous heterogeneity of money holdings. That
makes it challenging to prove existence of a steady state with nice properties.
Most researchers simplify or avoid the endogenous heterogeneity by making
special assumptions.1 In [11], I develop a technique that is built on the
existence result of Taber and Wallace [8] on indivisible commodity money,
and I show that there exists a nice steady state for fiat money that is a limit
of steady states for commodity money as the direct utility payoff of money
vanishes. That existence result is used in the current paper.2

The transition from indivisible money to divisible money is not trivial.
My approach is as follows. I embed the nice steady states for indivisible
money in the spaces of value functions and measures for divisible money. I
then let the unit of indivisible money go to zero and show that a limit of
the embedded steady states is a monetary steady state for divisible money.
To carry through this approach, I need (a) existence of the limit and (b)
continuity of a mapping whose fixed point is a divisible-money steady state.
For existence of the limit, I equip the spaces of value functions and measures
with some weak topologies. Although the topologies are weak, the mapping
is continuous if the space of value functions is restricted to functions that

1For a review of literature, see footnote 1 in [11].
2From the result in [11], one can easily construct a class of steady states for divisible

money with finite support {0, p, 2p, ...B} ≡ X, where B is the bound on individual money
holdings andB/p is an integer. For such a steady state, the value function is a step function
with jumps at the support and the restriction of the value function and the distribution to
X is a nice indivisible-money steady state with p as the smallest unit of indivisible money.
Because the focus of this paper is steady states with nice properties, such a construction
is not used.
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are continuous, concave, and strictly increasing. Therefore, the main task
is to show that the limit value function is in that space. The challenging
property is continuity at zero. To establish continuity, I assume that the
marginal utility of consumption at zero is finite, and, show, through a lengthy
argument, that the slope of indivisible-money steady-state value functions is
uniformly bounded.
The proof technique used here is applicable to other versions of matching

models of money–for example, the alternating endowment model studied in
Wallace and Zhu [10], and the random matching model with money creation
studied in Molico [6]. It could also be useful in other models with endogenous
heterogeneity.

2 The model and the existence result

The model is that in [11], except that money is now divisible.

2.1 Environment

Time is discrete, dated as t ≥ 0. There is a [0, 1] continuum of each of
N ≥ 3 types of infinitely lived agents, and there are N distinct produced
and perishable types of divisible goods at each date. A type n agent, n ∈
{1, 2, ..., N}, produces only good n and consumes only good n + 1 (modulo
N). Each agent maximizes expected discounted utility with discount factor
β ∈ (0, 1). For a type n agent, utility in a period is u(qn+1) − qn, where
qn+1 ∈ R+ is the amount of good n+1 consumed and qn ∈ R+ is the amount
of good n produced. The utility function u : R+ → R+ is strictly increasing,
strictly concave, and continuously differentiable and satisfies u(0) = 0 and
u0(∞) = 0. In addition, I assume that u0(0) is large but finite. The lower
bound on u0(0) is specified below. Finiteness of u0(0) is used only to establish
a uniform upper bound on the slope of the indivisible-money value functions.
There exists a fixed stock of money which is perfectly durable and divis-

ible. Money is symmetrically distributed across the N specialization types.
There is an exogenous (finite) upper bound on individual holdings. The
bound is denoted by B. I assume that B is large relative to the average
holding. Note that B larger than the average holding is necessary for trade
to occur. Further, I normalize the average money holding per specialization
type to be unity.
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In each period, agents are randomly matched in pairs. A meeting between
a type n agent, a consumer, and a type n + 1 agent, a producer, is called
a single-coincidence meeting. Other meetings are not relevant. In meetings,
agents’ types and money holdings are observable, but any other information
about an agent’s trading history is private. In a meeting, the consumer makes
a take-it-or-leave-it offer to the producer.

2.2 Definition of equilibrium

The definition of equilibrium for divisible money is analogous to that for
indivisible money in [11]. As in [11], equilibria in consideration are symmetric
over agent types.
Let v : [0, B] → R+ be non decreasing. If v is taken to be the value

function defined on money holdings at the start of the next period, prior
to the realization of matching, then payoffs and optimal offers in meetings
of the current period can be defined in terms of v. In a meeting between a
consumer with holding x (pre-trade) and a producer with holding m (pre-
trade), the consumer may choose to pay p amount of money to the producer,
where p ∈ Γ(x,m) ≡ [0,min{x,B − m}], the set of feasible payments of
money. Take-it-or-leave-it offers by the consumer imply that the consumer
can demand production equal to β[v(m + p) − v(m)] if he pays p. It is
convenient to define v(a2, a1) ≡ v(a2)− v(a2 − a1). Let

f̃(x,m, v) = max
p∈Γ(x,m)

u[βv(m+ p, p)] + βv(x− p). (1)

Also, let

p̃(x,m, v) ∈ arg max
p∈Γ(x,m)

u[βv(m+ p, p)] + βv(x− p) (2)

be such that p̃(., ., v) : [0, B]2 → [0, B] is Borel measurable. Hence, f̃(x,m, v)
is the payoff for the consumer and p̃(x,m, v) is the optimal offer of money. (It
is important to remember that the first argument of f̃ and p̃ is the consumer’s
pre-trade holding and the second is the producer’s.) To express the law
of motion for the distribution of money holdings, I need some additional
notation. Let the set-valued mappings γ(.; v) and ζ(.; v) on the Borel sets of
[0, B] be defined by

γ([0, x]; v) = {(y,m) ∈ [0, B]2, y − p̃(y,m, v) ≤ x}, (3)

ζ([0, x]; v) = {(m, y) ∈ [0, B]2, y + p̃(m, y, v) ≤ x}. (4)
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Here, γ([0, x]; v) is the set of pairs of (y,m) such that if a consumer with
y (pre-trade) meets a producer with m (pre-trade), then the consumer’s
post-trade holding is no greater than x; and ζ([0, x]; v) is the set of pairs of
(m, y) such that if a consumer with m (pre-trade) meets a producer with
y (pre-trade), then the producer’s post-trade holding is no greater than x.
Moreover, for a Borel measure μ on [0, B], let μ2 denote the product Borel
measure μ× μ on [0, B]2.
Now let vt denote the value function of money holdings at the start of

period t, and let μt denote the Borel measure of money holdings on [0, B] at
the start of period t, so that μt[0, x] is the fraction of agents holding money no
greater than x before period t matching. Then the value function vt satisfies

vt(x) =
N − 1
N

βvt+1 (x) +
1

N

Z
f̃(x,m, vt+1)dμt(m). (5)

This follows from the fact that the payoff to being a producer with x is
βvt+1 (x). And the law of motion for μt+1 can be expressed as

μt+1[0, x] =
N − 2
N

μt[0, x] +
1

N
μ2tγ([0, x]; vt+1) +

1

N
μ2t ζ([0, x]; vt+1). (6)

Here, μ2tγ([0, x]; vt+1) is the measure of consumers with post-trade holdings
no greater than x and μ2t ζ([0, x]; vt+1) is the measure of producers with post-
trade holdings no greater than x.

Definition 1 Given μ0, a sequence {vt, μt+1}∞t=0 is an equilibrium if it sat-
isfies (1)− (6). A monetary equilibrium is an equilibrium with positive con-
sumption and production. A pair (v, μ) is a steady state if {vt, μt+1}∞t=0 with
vt = v and μt+1 = μ is an equilibrium for μ0 = μ.

2.3 The main result

The main result is the following theorem.

Theorem 1 If B ≥ 8 and ∞ > u0(0) ≥ [4/(Rβ)]2, where R ≡ [(N −
(N − 1)β]−1, then there exists a monetary steady state, (v, μ), where v is
continuous, strictly increasing, and strictly concave and μ has full support.

To establish the theorem, one conceivable approach is to directly mimic
the proof for indivisible money in [11, Proposition 1]: (i) attach some utility
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to divisible money and prove that a steady state exists; (ii) take a limit as
the utility goes to zero and show that the limit is bounded away from the
non monetary steady state. Step (i) would seemingly appeal to Fan’s Fixed
Point Theorem (see [1, p. 550]). This involves defining a mapping whose
fixed point is a steady state. The hypotheses include: (a) the mapping is
continuous; (b) the domain of the mapping is compact; (c) the image of
the mapping is contained in the domain. However, they cannot be satisfied
for divisible money. Therefore, I pursue another approach. I start with the
indivisible-money steady state (for fiat money) and let the size of the smallest
unit approach zero. The next three sections are devoted to carrying out that
approach. Although the general strategy is straightforward, the details are
not simple.
In section 3, I formally define the mapping implied by (1)-(6) and con-

struct a candidate for the steady state. The domain of the mapping isV×Λ,
whereV is a set of bounded, continuous, concave, and strictly increasing real
functions defined on [0, B], and Λ is the set of probability measures defined
on [0, B] with unit mean. Here, V is taken as a subspace of the space of all
real functions defined on [0, B] with the product topology, and Λ is taken as
a subspace of all probability measures on [0, B] with the weak* topology. To
construct the candidate, I embed the nice steady states for indivisible money
in V×Λ. In particular, a steady-state value function is embedded using
linear interpolation. Then, I let the unit of indivisible money go to zero and
take a limit of the embedded steady states. The limit, denoted (v, μ), is the
candidate, where v is in the closure of V. In fact, I show that v is strictly
increasing. Next, I show that if v ∈ V, then (v, μ) is a fixed point of the
mapping. Here, I use continuity of the mapping. I also use the following
result: if the unit of money is close to zero, then the embedded steady state
is close to its image under the mapping. This is the exact intuition behind
the approximation argument. The main remaining challenge is showing that
v ∈ V (that v is continuous at 0). As is well-known, V is not complete in
that sense.
Section 4 is devoted to establishing an intermediate result. In order to

show that v is continuous at 0, I use finiteness of u0(0) to establish that the
slope of the embedded value functions is uniformly bounded. The proof of
boundedness proceeds by way of contradiction. By the contradicting assump-
tion, if the unit of money, ∆, is sufficiently small, then in a nice indivisible-
money steady state, the marginal value of money at ∆ is arbitrarily large.
This and u0(0) <∞ can be shown to imply that almost all agents must have
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money holdings near zero, which is impossible.
Roughly speaking, the argument in section 4 leading to the contradiction

proceeds as follows. For a nice indivisible-money steady state, assume by
contradiction that the marginal value at money holding x1 is large. Because
the value function is bounded independently of ∆, the product of x1 and the
marginal value at x1 is bounded. Therefore, x1 is small. Because u0(0) is
finite, consumers with holdings no greater than x1 only trade with producers
with holdings no greater than some x2, where the marginal value at x2 is also
large. It follows that x2 is small. However, producers with holdings no greater
than x1 trade with all consumers with holdings greater than x1. Because the
outflow from and inflow into {0, ..., x1} are equal, it follows that the measure
of the set {x1, ..., x2}, or a close approximation to it, is bounded from below.
By an elaborate induction argument, this leads to the contradiction. While
section 4 is the innovative part of the proof of the main theorem, the flow of
the argument in the rest of the paper can be followed provided the uniform
boundedness conclusion, the conclusion of Proposition 1, is accepted.
In section 5, I first use the uniform bound on the slope of the embedded

value functions to prove Theorem 1 except for the full support property.
Then I complete the proof by showing that the steady state measure has full
support.

3 A candidate for a monetary steady state

I start by defining the mapping implied by (1)-(6). Let W be the unique
positive solution ofN(1−β)W = u(βW )+N . LetV be the set of continuous,
concave, and strictly increasing functions from [0, B] to [0,W ] and let Λ
be the set of Borel probability measures on [0, B] satisfying the unit mean
condition. Here, V is taken as a subspace of the space of all real functions
defined on [0, B] with the product topology, and Λ is taken as a subspace of
all probability measures on [0, B] with the weak* topology (see [1, p. 50 and
p. 474]). Let the mapping T = (Tv, Tμ) on V×Λ be defined by

Tv(v, μ)(x) =
N − 1
N

βv (x) +
1

N

Z
f̃(x,m, v)dμ(m), (7)

and

Tμ(v, μ)[0, x] =
N − 2
N

μ[0, x] +
1

N
μ2γ([0, x]; v) +

1

N
μ2ζ([0, x]; v). (8)
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By Definition 1, a fixed point of T is a monetary steady state.
As introduced above, a candidate for a fixed point of T is to be con-

structed. The construction uses results set up in the following lemmas.
Lemma 1 establishes continuity of T . Lemma 2 gives existence of nice
indivisible-money steady states. Then I embed Lemma 2 indivisible-money
steady states inV×Λ. Lemma 3 shows that a subsequence of the embedded
steady states converges to some limit point as the unit of money goes to zero.
The limit point is the candidate. In fact, Lemma 3 shows that the limit value
function is strictly increasing. Finally, Lemma 4 shows that if the limit value
function is in V, then the limit point is indeed a monetary steady state.
The next lemma establishes continuity of T .

Lemma 1 T : V×Λ→ V×Λ is continuous.

Proof. First, we note that V × Λ is a metric space. It is well known
that pointwise convergence in V implies uniform convergence (for instance,
see [5, Exercise 2, p. 86]). Hence V is metrizable. By [1, 14.11 Theorem, p.
482], Λ is metrizable. So V×Λ is metrizable.
Next, we show that f̃(., ., .) and p̃(., ., .) are continuous on [0, B]2 × V.

To see this, let A = {(x,m, v, p) : (x,m, v) ∈ [0, B]2 ×V and p ∈ Γ(x,m)},
and let k : A → R+ be defined by k(x,m, v, p) = u[βv(m + p, p)] + βv(x −
p). Because pointwise convergence in V implies uniform convergence, k is
continuous on A. Then because the correspondence (x,m, v) 7→ Γ(x,m) is
continuous, it follows from Berge’s Maximum Theorem (see [1, p. 539]) that
f̃ is continuous and p̃ is upper hemicontinuous. For (x,m, v) ∈ [0, B]2 ×V,
because v is concave and strictly increasing, u[βv(m + p, p)] + βv(x − p),
viewed as a function of p, is strictly concave. Hence p̃(x,m, v) is a singleton
and so p̃ is continuous.
Next, we show that T is a single-valued mapping from V × Λ to it-

self. Fix (v, μ) ∈ V × Λ. By continuity of f̃ and p̃,
R
f̃(x,m, v)dμ(m),

γ([0, x]; v), and ζ([0, x]; v) are well defined for all x. Hence T (v, μ) is well
defined. As shown above, p̃(x,m, v) is a singleton for (x,m) ∈ [0, B]2. Hence
T (v, μ) is single-valued. Clearly, Tμ(v, μ) ∈ Λ, and Tv(v, μ) is strictly in-
creasing with Tv(v, μ)(x) ∈ [0,W ] for x ∈ [0, B]. By continuity of f̃ and the
Dominated Convergence Theorem (see [1, p. 407]),

R
f̃(xn,m, v)dμ(m) →R

f̃(x,m, v)dμ(m) as xn → x. Hence Tv(v, μ) is continuous. Now let 0 ≤
x1 < x2 ≤ B, 0 < α < 1, and x = αx1 + (1− α)x2. Because αp̃(x1,m, v) +
(1 − α)p̃(x2,m, v) ∈ [0, x], it follows that f̃(x,m, v) ≥ αf̃(x1,m, v) + (1 −
α)f̃(x2,m, v). Hence Tv(v, μ) is concave. This gives T (v, μ) ∈ V×Λ.
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Next, we claim that if vn → v, then f̃(., ., vn) and p̃(., ., vn) converge uni-
formly to f̃(., ., v) and p̃(., ., v), respectively. It suffices to show that f̃(., ., .)
and p̃(., ., ) are uniformly continuous on [0, B]2 × {v, v1, v2, ...}. This follows
because f̃ and p̃ are continuous, {v, v1, v2, ...} is compact (see [1, 2.35 Theo-
rem, p. 41]), and continuity in a compact domain implies uniform continuity
(see [5, (4.1) Theorem , p. 79]).
Next, for v ∈ V, let gv, hv : [0, B]2 → [0, B] be defined by gv(x,m) =

x− p̃(x,m, v) and hv(x,m) = x+ p̃(m,x, v). Note that γ([0, x]; v) = g−1v [0, x]
and ζ([0, x]; v) = h−1v [0, x].
Now let (vn, μn) → (v, μ). For continuity of Tμ, it suffices to show that

μ2ng
−1
vn and μ2nh

−1
vn converge weakly to μ2g−1v and μ2h−1v , respectively. This

follows from [2, Theorem 5.5, p. 34], the claim, and that μ2n converges weakly
to μ2. For continuity of Tv, it suffices to show that

R
f̃(x,m, vn)dμn(m) →R

f̃(x,m, v)dμ(m) for x ∈ [0, B]. This follows from [1, 14.7 Corollary, p. 480]
and the claim.

As noted above, my approach is to approximate a steady state for di-
visible money using steady states for indivisible money. To begin with, I
introduce the relevant notation and definitions. Let the unit of indivisi-
ble money be denoted by ∆, the set {0,∆, 2∆, ..., B} by B∆, and the set
{p ∈ B∆, p ≤ min{x,B −m}} by Γ∆(x,m). That is, B∆ is the indivisible-
money counterpart of [0, B] and Γ∆(x,m) is that of Γ(x,m). Let (w∆, π∆)
be a steady state for indivisible money with ∆ as the unit of money, where
w∆ is the value function of money holdings and π∆ is the measure of money
holdings. That is, (w∆, π∆) is the indivisible-money counterpart of (v, μ).
Also, let w∆(a2, a1) ≡ w∆(a2)− w∆(a2 − a1). Let

f(x,m,w∆) = max
p∈Γ∆(x,m)

u[βw∆(m+ p, p)] + βw∆(x− p), (9)

p(x,m,w∆) = arg max
p∈Γ∆(x,m)

u[βw∆(m+ p, p)] + βw∆(x− p). (10)

Note that f is the indivisible-money counterpart of f̃ in (1) and p is that of p̃
in (2). For a measure π on B∆ and an interval I, let πI ≡ π(I∩B∆). Finally,
a real function w defined on B∆ is concave if 2w(x) ≥ w(x−∆) +w(x+∆)
for 0 < x < B.
The next lemma is the indivisible-money counterpart of Theorem 1.

Lemma 2 If B ≥ 8 and u0(0) ≥ [4/(Rβ)]2, then there exists a monetary
steady state (w∆, π∆) with w∆ strictly increasing and strictly concave and
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with w∆(0) = 0 and D/β ≤ w∆(4) < W , where D is the unique solution of
u0(D) = [4/(Rβ)]2.

Proof. See [11, Proposition 1].

For a Lemma 2 steady state (w∆, π∆), let v∆ be the linear interpolation
of w∆ and let μ∆ be the extension of π∆ to [0, B]. That is, if b ∈ B∆ and
x ∈ [b, b+∆), then

v∆(x) ≡ w∆(b) + (x− b)w∆(b+∆,∆)/∆, (11)

μ∆{b} = μ∆[b, x) ≡ π∆(b). (12)

By definition, if w defined on B∆ is concave, then its linear interpolation on
[0, B] is concave. Hence, (v∆, μ∆) is an embedding of (w∆, π∆) in V×Λ. It
is convenient to choose ∆ = 10−nB for n ∈ N as the sequence of the units
of indivisible money, and let the corresponding sequence of embedded steady
states be denoted by {(v∆, μ∆)}∆.
The next lemma gives a candidate for a monetary steady state.

Lemma 3 The sequence {(v∆, μ∆)}∆ has a limit point (v, μ), where v is in
the closure of V and is concave and strictly increasing, and μ is in Λ.

Proof. By [1, 14.11 Theorem, p. 482], the closure of Λ is compact.
Because Λ is closed, it follows that Λ is compact. By the Tychonoff Product
Theorem (see [1, p. 52]), V̄ (the closure of V) is compact. Hence V̄×Λ
is compact, and therefore, {(v∆, μ∆)}∆ has a limit point (v, μ) in V̄×Λ.
Concavity of v is obvious. For strict monotonicity, see the appendix.

The next lemma shows that a Lemma 3 limit point (v, μ) is a monetary
steady state if v ∈ V.

Lemma 4 Let (v, μ) be a Lemma 3 limit point. If v ∈ V, then T (v, μ) =
(v, μ).

Proof. Let {(v∆, μ∆)}∆ be a sequence that converges to (v, μ) and let
{(w∆, π∆)}∆ be the sequence of Lemma 2 steady states corresponding to
{(v∆, μ∆)}∆. Let Tv(v∆, μ∆) be denoted by Tv∆ and Tμ(v∆, μ∆) by Tμ∆. Let
d(., .) be a metric on V×Λ. Lemma 1(ii) implies d[(Tv∆, Tμ∆), T (v, μ)]→
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0. Because d[(v, μ), T (v, μ)] ≤ d[(v, μ), (Tv∆, Tμ∆)]+d[(Tv∆, Tμ∆), T (v, μ)],
it suffices to prove (i)Tv∆ → v and (ii)Tμ∆ → μ.
(i) Note that Tv∆(0) = v(0) = 0. So it suffices to show Tv∆(x)→ v(x) for

x > 0. Fix x > 0 and fix ε > 0. Let ∆ be small such that |v∆(y)− v(y)| < ε
all y and v(∆) < ε. The first inequality holds for small ∆ because pointwise
convergence in V implies uniform convergence. The second inequality and
concavity imply |v(y)− v(z)| < ε for |y − z| ≤ ∆. First consider x ∈ B∆.
By construction (see (11)),

v∆(x) =
N − 1
N

βv∆(x) +
1

N

P
m∈B∆

μ∆{m}f̄(x,m, v∆),

where
f̄(x,m, v∆) = max

p∈Γ∆(x,m)
u[βv∆(m+ p, p)] + βv∆(x− p). (13)

By definition (see (7)),

Tv∆(x) =
N − 1
N

βv∆(x) +
1

N

P
m∈B∆

μ∆{m}f̃(x,m, v∆).

Fix (x,m) and let c = f̃(x,m, v∆) − f̄(x,m, v∆). Note that c ≥ 0. Let
p = p̃(x,m, v∆). A lower bound on f̄(x,m, v∆) can be obtained by taking
p0 ∈ [p, p+∆]∩B∆ in (13). Now p0 ≥ p implies c ≤ β[v∆(x−p)−v∆(x−p0)],
and this and |v∆(y)− v(y)| < ε all y imply c < v(x−p)−v(x−p0)+2ε. Then
it follows from p0 − p ≤ ∆ that c < 3ε. Hence 0 ≤ Tv∆(x)− v∆(x) < 3ε/N .
By |Tv∆(x)− v(x)| ≤ |Tv∆(x)− v∆(x)|+ |v∆(x)− v(x)|,

|Tv∆(x)− v(x)| < 3ε/N + ε for x ∈ B∆. (14)

Next consider x /∈ B∆. Let a0 = max{m ∈ B∆ : m < x} and a1 = a0 +∆.
Monotonicity of Tv∆ implies |Tv∆(x)− v(x)| < maxi=0,1 |Tv∆(ai)− v(x)|,
and it follows from (14) and |ai − x| < ∆ that for i = 0, 1,

|Tv∆(ai)− v(x)| ≤ |Tv∆(ai)− v(ai)|+ |v(ai)− v(x)| < 3ε/N + 2ε.

This gives Tv∆(x)→ v(x).
(ii) First we introduce some notation. For each (y,m) ∈ B2

∆, let

p̄(y,m, v∆) = arg max
p∈Γ∆(y,m)

u[βv∆(m+ p, p)] + βv∆(y − p).
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(Note that p̄(y,m, v∆) may be multi-valued.) By construction (see (12)),

μ∆[0, x] =
N − 2
N

μ∆[0, x] +
1

N
γ̄∆[0, x] +

1

N
ζ̄∆[0, x],

γ̄∆[0, x] =
P

(y,m)∈B2∆
λ̄∆([0, x]; y,m)μ∆{y}μ∆{m},

ζ̄∆[0, x] =
P

(m,y)∈B2∆
λ̄∆([0, x];m, y)μ∆{m}μ∆{y},

where λ̄∆(.; y,m) is a probability measure on [0, B] satisfying

λ̄∆(A; y,m) = 1 where A = {z : z ∈ y − p̄(y,m, v∆)}.

By definition (see (8)),

Tμ∆[0, x] =
N − 2
N

μ∆[0, x] +
1

N
γ̃∆[0, x] +

1

N
ζ̃∆[0, x],

γ̃∆[0, x] =
P

(y,m)∈B2∆
λ̃∆([0, x]; y,m)μ∆{y}μ∆{m},

ζ̃∆[0, x] =
P

(m,y)∈B2∆
λ̃∆([0, x];m, y)μ∆{m}μ∆{y},

where λ̃∆(.; y,m) is the probability measure on [0, B] satisfying

λ̃∆({z}; y,m) = 1 where z = y − p̃(y,m, v∆).

Next, we introduce a metric to metricize the weak* topology of Λ. The
metric dL, called Lévy distance (see Huber [3, p. 25]), is defined by

dL(μ1, μ2) = inf{ε : ∀x,
μ1[0,min{0, x− ε}]− ε ≤ μ2[0, x] ≤ μ1[0,max{B, x+ ε}] + ε}.

Note that for (y,m) ∈ B2
∆ and p ∈ p̄(y,m, v∆), |p− p̃(y,m, v∆)| ≤ ∆. It

follows that

∀x, γ̄∆[0,min{0, x−∆}] ≤ γ̃∆[0, x] ≤ γ̄∆[0,max{B, x+∆}].

Hence dL(γ̃∆, γ̄∆) ≤ ∆. Similarly, dL(ζ̃∆, ζ̄∆) ≤ ∆. This gives Tμ∆ → μ.

4 A uniform upper bound on the slope of indivisible-money
value functions

Let (v, μ) be a Lemma 3 limit point. By Lemma 4, to prove existence of
a monetary steady state, it suffices to show that v is continuous. To this

13



end, I use the assumption that u0(0) is finite. In the rest of this section,
let {(v∆, μ∆)}∆ be a sequence that converges to (v, μ), and let {(w∆, π∆)}∆
be the corresponding sequence of Lemma 2 steady states. Using the finite-
ness assumption of u0(0), I show a stronger result: w∆(∆)/∆ is uniformly
bounded.
The argument requires considerable additional notation. In order to fa-

cilitate subsequent reference to it, I group the notation in a definition.

Definition 2 (i) For x0 ∈ B∆\{0}, let the sequence {xn, yn, zn}n≥1 be de-
fined by

xn = max{x : p(xn−1, x, w∆) 6= {0}}+∆,

zn = min{x : min p(x, 0, w∆) ≥ xn},
yn = max{xn + xn+1, zn}.

(ii) Let ρ ≡ N(1−β)
[u0(0)−1]β . Fix a continuity point x̂ of μ with x̂ ≥ 1, and let

L ≡ min{n ∈ N : 2−n+1 ≤ μ[x̂, B])} and K ≡
PL

j=1 2
j−1. For the quadratic

equation x2 + s1x − s2 = 0 with (s1, s2) > (0, 0), denote its unique positive
root by g(s1, s2). Let ĝ ≡ min{g(s1, s2) : (s1, s2) ∈ [ρ, 1]× [ρ2/K, 1]}, and let
σ(l) = int(2−l/ĝ), where int(x) is the smallest integer no less than x.
(iii) Let ω0 = ∆, and let the sequence {ωl}l≥1 be defined by ωl = yσ(l),

where yσ(l) is determined by the part (i) sequence {(xn, yn, zn)} for x0 = ωl−1.

In part (i) of the definition, xn is the money holding of the poorest pro-
ducers with whom consumers with xn−1 do not trade, while zn is that of the
poorest consumers who offer at least xn to producers with 0. In part (ii), the
restriction x̂ ≥ 1 is without loss of generality. Also note that ĝ > 0.
As noted above, the proof of the uniform boundedness is by way of contra-

diction, and the contradiction is achieved by an induction argument to show
that almost all agents must have money holdings near zero. To elaborate
further, the induction argument follows two related lines. The first line is to
show that the sequence {ωl} in Definition 2 is a measure-exhausting sequence
of money holdings, where measure exhausting means that for some term in
the sequence, the measure of all larger holdings is bounded above in a useful
way. Because ωl is determined by ωl−1 through the sequence {xn, yn, zn} for
x0 = ωl−1 in Definition 2, not surprisingly, the measure-exhausting property
of {ωl} is derived from the same property of {xn, yn, zn}. The main lemmas

14



here are Lemmas 7 and 8. The main analysis here uses the outflow-equal-
inflow properties of a steady state. The second line of the argument pertains
to existence of ωl for small ∆ and for large l. (It turns out that l = L is
sufficiently large.) The main lemmas here are Lemmas 10 and 11. The key
here is to find a link between the marginal values of money at ωl and ωl−1.
The link and the unbounded marginal value at ∆ guarantee the existence. A
crucial intermediate step, Lemma 17, is stated and proved in the appendix.
In Proposition 1, the two lines are combined to draw the contradiction.
In the next two lemmas, I collect some preliminary results. Lemma 5

describes the dependence of the optimal offer in (10) on the money holdings
of the consumer and the producer. Lemma 6 gives some basic properties of
{(xn, yn, zn)}.

Lemma 5 Let (w∆, π∆) ∈ {(w∆, π∆)}∆.
(i) If x > y, then 0 /∈ p(x, y, w∆).
(ii) If p1 ∈ p(x,m,w∆) and p2 ∈ p(x+∆,m,w∆), then p2 − p1 ∈ {0,∆}.
(iii) If p1 ∈ p(x,m,w∆) and p2 ∈ p(x,m+∆, w∆), then p1 ≤ p2 +∆.
(iv) If 0 ∈ p(x0,m0, w∆), x > x0, andm ≥ m0−(x−x0), thenmax p(x,m,w∆)

≤ x− x0.

Proof. See [11, Lemma 6].

Lemma 6 Let (w∆, π∆) ∈ {(w∆, π∆)}∆. Let {(xn, yn, zn)} for x0 ∈ B∆\{0}
and ρ be as given in Definition 2.
(i) {xn} exists and is non decreasing.
(ii) If {zn} exists, then it is non decreasing.
(iii) If {yn} exists, then it is non decreasing.
(iv) π∆[0, xn) > ρ for n ≥ 1.

Proof. See the appendix.

The following lemma establishes the key property of the sequence {(xn, yn, zn)}.
That is, it is a measure-exhausting sequence.

Lemma 7 Let (w∆, π∆) ∈ {(w∆, π∆)}∆. Let {(xn, yn, zn)} for x0 ∈ B∆\{0},
ρ, K, and ĝ be as given in Definition 2. Assume that yn exists.
(i) If π∆[yn, B]−π∆[xn+1, yn) < ρ

K
, then π∆[yn, B] < 1

2
{1−π[0, xn)+ ρ

K
}.

(ii) If π∆[yn, B]−π∆[xn+1, yn) ≥ ρ
K
, then xn+1 > xn and π∆[xn, xn+1) ≥ ĝ.
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Proof. In this and subsequent proofs, the subscript ∆ is deleted from
(w∆, π∆) when it is not needed, and w∆ is suppressed from the list of argu-
ments of p.
(i) We have

1 ≥ π[0, xn) + π[xn+1, yn) + π[yn, B] > π[0, xn) + 2π[yn, B]−
ρ

K
,

where the last inequality follows from the hypothesis. The inequality between
the first and third terms gives the conclusion.
(ii) First consider the outflow from [0, xn). Note that producers with

x ≥ xn do not contribute to the outflow. Consider producers with x < xn
and consumers with m ≥ yn. We have

xn ≤ min p(zn, 0) ≤ min p(yn, 0) ≤ x+min p(yn, x) ≤ x+min p(m,x),

where the first inequality follows from the definition of zn, the second from the
definition of yn and Lemma 5(ii), the third from Lemma 5(iii), and the fourth
from Lemma 5(ii). So a lower bound on the outflow is 1

N
π[0, xn)π[yn, B].

Next consider the inflow into [0, xn). Note that consumers with x < xn
do not contribute to the inflow. We start with consumers with x ≥ yn and
producers with m ≥ 0. Apply Lemma 5(iv) with (x0,m0) = (xn, xn+1). (By
the definition of {xn}, p(xn, xn+1) = {0}. By the definition of yn, yn ≥
xn + xn+1 and hence m ≥ 0 ≥ m0 − (x− x0).) It follows that max p(x,m) ≤
x−x0 = x−xn or x−max p(x,m) ≥ xn. That is, consumers with x ≥ yn do
not contribute to the inflow. Now we consider consumers with x ≥ xn and
producers with m ≥ xn+1. Apply Lemma 5(iv) with (x0,m0) = (xn, xn+1). It
follows that x−max p(x,m) ≥ xn. That is, consumers with x ≥ xn do not
contribute to the inflow if they meet producers with m ≥ xn+1. So an upper
bound on the inflow is 1

N
π[xn, yn)π[0, xn+1).

Because (w, π) is a steady state, the outflow from and inflow into [0, xn)
are equal. Therefore,

π[0, xn)π[yn, B] ≤ π[xn, yn)π[0, xn+1). (15)

By the hypothesis, π[yn, B] > π[xn+1, yn). So (15) implies xn+1 > xn.
Now write π[xn, yn) as π[xn, xn+1) + π[xn+1, yn) and π[0, xn+1) as π[0, xn) +
π[xn, xn+1) and insert these into (15). Then, letting x ≡ π[xn, xn+1), (15)
is equivalent to 0 ≤ x2 + s1x − s2, where s1 = π[0, xn) + π[xn+1, yn) > ρ
(by Lemma 6(iv)) and s2 = π[0, xn){π[yn, B] − π[xn+1, yn)} > ρ2/K (by
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Lemma 6(iv) and the hypothesis). Then it follows from the definition of ĝ
that π[xn, xn+1) ≥ ĝ.

The next lemma is an application of Lemma 7. It provides the ingredients
for the induction argument used in the proof of Proposition 1.

Lemma 8 Let (w∆, π∆) ∈ {(w∆, π∆)}∆. Let {ωl}, ρ, and K be as given in
Definition 2.
(i) If ω1 exists, then π∆[ω1, B] <

1
2
[1− K−1

K
ρ].

(ii) If ωl exists and π∆[ωl−1, B] <
1

2l−1−
1

2l−1
K−
Pl−1

j=1
2j−1

K
ρ, then π∆[ωl, B] <

1
2l
− 1

2l

K−
Pl

j=1
2j−1

K
ρ.

Proof. (i) By definition, ω1 = yσ(1), and yσ(l) is determined by {(xn, yn, zn)}
for x0 = ∆. If π[yn, B]− π[xn+1, yn) <

ρ
K
for some 1 ≤ n ≤ σ(1), then

π[ω1, B] ≤ π[yn, B] <
1

2
{1− π[0, xn) +

ρ

K
} < 1

2
[1− K − 1

K
ρ],

where the first inequality follows from Lemma 6(iii), the second from Lemma
7(i), and the last from Lemma 6(iv). If π[yn, B] − π[xn+1, yn) ≥ ρ

K
for all

1 ≤ n ≤ σ(1), then by Lemma 7(ii), we have xn+1 > xn and π[xn, xn+1) ≥ ĝ
for all 1 ≤ n ≤ σ(1). It follows that

π[0, ω1) ≥ π[0, x1) +
Pσ(1)

n=1 π[xn, xn+1) > ρ+ σ(1)ĝ ≥ 1
2
+ ρ,

where the second inequality follows from Lemma 6(iv) and the last from the
definition of σ(1). Hence π[ω1, B] = 1− π[0, ω1) <

1
2
− ρ.

(ii) By definition, ωl = yσ(l), where yσ(l) is determined by {(xn, yn, zn)}
for x0 = ωl−1. If π[yn, B]− π[xn+1, yn) <

ρ
K
for some 1 ≤ n ≤ σ(l), then

π[ωl, B] ≤ π[yn, B]

<
1

2
{1− π[0, xn) +

ρ

K
}

≤ 1
2
{π[x0, B] +

ρ

K
}

<
1

2l
− 1

2l
K −

Pl
j=1 2

j−1

K
ρ,
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where the first inequality follows from Lemma 6(iii), the second from Lemma
7(i), the third from π[0, xn)+π[x0, B] ≥ 1, and the last from the hypothesis.
If π[yn, B]− π[xn+1, yn) ≥ ρ

K
for all 1 ≤ n ≤ σ(l), then by Lemma 7(ii), we

have xn+1 > xn and π[xn, xn+1) ≥ ĝ for all 1 ≤ n ≤ σ(l). Hence,

π[0, ωl) ≥ π[0, x1) +
Pσ(l)

n=1 π[xn, xn+1)

≥ 1− π[x0, B] + σ(l)ĝ

> 1− 1

2l−1
+

1

2l−1
K −

Pl−1
j=1 2

j−1

K
ρ+

1

2l

= 1− 1

2l
+

1

2l−1
K −

Pl−1
j=1 2

j−1

K
ρ

> 1− 1

2l
+
1

2l
K −

Pl
j=1 2

j−1

K
ρ,

where the third inequality follows from the hypothesis and the definition of
σ(l). The conclusion follows from π[ωl, B] = 1− π[0, ωl).

By Lemma 8, if the sequence {ωl}Ll=1 exists and if ωL is sufficiently small,
then we get a contradiction to the assumption that the mean of money hold-
ings is unity. The rest of this section shows that if w∆(∆)/∆ is unbounded
as ∆ approaches 0, then there exists {ωl}Ll=1 satisfying those conditions. As
a first step, the next lemma shows that large w∆(x0,∆)/∆ implies small xn
and gives a sufficient condition for existence of zn and yn.

Lemma 9 Let (w∆, π∆) ∈ {(w∆, π∆)}∆. Let {(xn, yn, zn)} for x0 ∈ B∆\{0}
be as given in Definition 2.
(i) xn < W [u0(0)]n[w∆(x0,∆)/∆]

−1.
(ii) For any n, if w∆(x0,∆)/∆ is sufficiently large, then zn and yn exist.

Proof. See the appendix.

The next lemma is crucial for existence of {ωl}Ll=1.

Lemma 10 Let (w∆, π∆) ∈ {(w∆, π∆)}∆. Let {(xn, yn, zn)} for x0 ∈ B∆\{0}
and {(x∗n, y∗n, z∗n)} for x∗0 = ∆ be as given in Definition 2. If yn and y∗σ(1) exist
and 8x∗1 ≤ B, then there exist cn > 0 and C > 0, not dependant on ∆, such
that w∆(yn,∆) > min{cnw∆(x0,∆), Cw∆(∆)}.
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Proof. See the appendix.

The next lemma gives the desired sufficient condition for existence of
{ωl}Ll=1.
Lemma 11 Let (w∆, π∆) ∈ {(w∆, π∆)}∆. Let {ωl} and L be as given in Def-
inition 2. If w∆(∆)/∆ is sufficiently large, then {ωl}Ll=1 exists and w∆(ωl,∆)
> ξlw∆(∆), where ξl > 0 does not depend on ∆.

Proof. First, we consider l = 1. By definition, ω1 = yσ(1), and yσ(l)
is determined by {(xn, yn, zn)} for x0 = ∆. Note that this {(xn, yn, zn)}
sequence is the {(x∗n, y∗n, z∗n)} sequence in Lemma 10. Lemma 9(ii) and suf-
ficiently large w(∆)/∆ imply that yσ(1) exists and 8x1 ≤ B. Now apply
Lemma 10 for n = σ(1). We have w(ω1,∆) > min{cσ(1), C}w(∆). (Note
that w(∆,∆) = w(∆).) Then we set ξ1 = min{cσ(1), C}. Given the result
for l = 1, it suffices to prove that if w(ωl−1,∆) > ξl−1w(∆), where ξl−1 > 0
does not depend on ∆, then ωl exists and w(ωl,∆) > ξlw(∆), where ξl > 0
does not depend on ∆. By definition, ωl = yσ(l), and yσ(l) is determined
by {(xn, yn, zn)} for x0 = ωl−1. Lemma 9(ii) and sufficiently large w(∆)/∆
and w(ωl−1,∆) > ξl−1w(∆) imply that ωl exists. Now apply Lemma 10
for n = σ(l). We have w(ωl,∆) > min{cσ(l), Cw(∆)}w(∆). (Note that
w(ωl−1,∆) > ξl−1w(∆).) Then we set ξl = min{cσ(l)ξl−1, C}.

I can now prove that w∆(∆)/∆ is uniformly bounded.

Proposition 1 Let (w∆, π∆) ∈ {(w∆, π∆)}∆. There exists M , not depen-
dent on ∆, such that w∆(∆)/∆ < M .

Proof. Assume by contradiction that w∆(∆)/∆ is unbounded as ∆ goes
to 0. Then by Lemma 11, for (w∆, π∆) with sufficiently large w∆(∆)/∆, the
sequence {ωl}Ll=1 given in Definition 2 exists. By Lemma 8(i), π∆[ω1, B] <
1
2
[1− K−1

K
ρ]. By Lemma 8(ii) and by induction,

π∆[ωL, B] <
1

2L
− 1

2L
K −

PL
j=1 2

j−1

K
ρ =

1

2L
≤ 1
2
μ[x̂, B], (16)

where the equality and the last inequality follow from the definitions of L
and K. Now we have W > w∆(ωL) ≥ ωLw∆(ωL,∆)/∆ > ωLξLw∆(∆)/∆,
where the third inequality follows from Lemma 11. It follows that ωL < 1
for sufficiently large w∆(∆)/∆. Because x̂ ≥ 1 and μ is continuous at x̂,
π∆[ωL, B] ≥ π∆[x̂, B] = μ∆[x̂, B] >

1
2
μ[x̂, B] for small ∆. But this contra-

dicts (16).
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5 Completion of the proof

I begin by proving all of Theorem 1 except for full support of μ.

Proposition 2 If B ≥ 8 and ∞ > u0(0) ≥ [4/(Rβ)]2, then there exists a
monetary steady state, (v, μ), where v is continuous, strictly increasing, and
strictly concave.

Proof. Let (v, μ) be a Lemma 3 limit point. In this and subsequent
proofs, we suppress v from the list of arguments of f̃ and p̃. By Proposition
1, v(x) < Mx, and hence v is continuous at 0. By Lemma 3, v is concave
and strictly increasing: by concavity, v is continuous on (0, B) (see [1, 5.29
Theorem, p. 179]); by concavity and monotonicity, v is continuous at B.
Hence v ∈ V. Then by Lemma 4, (v, μ) is a monetary steady state. For
strict concavity of v, let 0 ≤ x1 < x2 ≤ B, 0 < α < 1, and x = αx1 +
(1 − α)x2. Because v is a steady state value function and v(x2) > 0, there
exists some A ⊂ [0, B] with μ(A) > 0 and p̃(x2,m) > 0 for m ∈ A. But then
αp̃(x1,m)+(1−α)p̃(x2,m) ≤ x implies f̃(x,m) > αf̃(x1,m)+(1−α)f̃(x2,m).
This gives strict concavity of v.

In what follows, let (v, μ) be a Proposition 2 steady state and let supp
μ denote the support of μ. (For the definition and existence of the sup-
port of a measure, see [1, p. 374].) The rest of this section shows that μ
has full support. As in [11], the full-support property comes from the prop-
erties of the value function. Although many of the ideas in [11] are used
here, the arguments are not identical. For an indivisible-money steady state
(w, π) with ∆ as the unit of money, by a straightforward induction argu-
ment, π(∆) > 0 implies full support, while π(∆) = 0 implies a periodic
support. The periodic support is ruled out by another argument. For the
(v, μ) steady state, an analogue to π(∆) > 0 is inf{x : μ(0, x) > 0} = 0.
Indeed, inf{x : μ(0, x) > 0} = 0 implies full support, but with quite a differ-
ent argument. Moreover, inf{x : μ(0, x) > 0} > 0 may or may not imply a
periodic support. The structure of the proof is as follows. Lemma 13 shows
that the bound on money holdings is binding; then Lemma 14 shows that
inf{x : μ(0, x) > 0} = 0 implies full support; then Proposition 3 uses that
sufficient condition to establish full support.
The next lemma collects some preliminary results, mainly the dependence

of the optimal offer in (2) on the money holdings of the consumer and the
producer.
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Lemma 12 (i) If p̃(x1,m1, v) = 0, x2 ≥ x1, and m2 ≥ m1 − (x2 − x1), then
p̃(x2,m2, v) ≤ x2 − x1.
(ii) If m1 < m2, then m1 + p̃(x,m1, v) ≤ m2 + p̃(x,m2, v).
(iii) If x2 > x1, then p̃(x2,m, v)− p̃(x1,m, v) ∈ [0, x2 − x1].
(iv) If x > m, then p̃(x,m, v) > 0.
(v) Let x,m ∈ supp μ and let Q be an open set in [0, B]. If either x −

p̃(x,m, v) ∈ Q or x+ p̃(m,x, v) ∈ Q, then μQ > 0.

Proof. See the appendix.

The next lemma shows that there is no endogenous bound on money
holdings.

Lemma 13 μ[0, x] = 1 if and only if x = B.

Proof. See the appendix.

The next lemma shows that inf{x : μ(0, x) > 0} = 0 implies full support.

Lemma 14 If inf{x : μ(0, x) > 0} = 0, then supp μ = [0, B].

Proof. Assume by contradiction that there exist z∗, y∗ ∈ supp μ with
μ(z∗, y∗) = 0. By the hypothesis, z∗ > 0; otherwise μ(z∗, y∗) > 0. Let
ε∗ = y∗−z∗

2y∗ . We use the following claim to draw a contradiction. Claim: If
there exist zi, yi ∈ supp μ with μ(zi, yi) = 0, then there exist zi+1, yi+1 ∈ supp
μ with μ(zi+1, yi+1) = 0 and yi+1 ≤ zi and yi+1 − zi+1 > (yi − zi)(1 − 2ε∗).
With the claim, by setting z1 = z∗ and y1 = y∗, and by induction, we havePn

i=1(yi − zi) > (y
∗ − z∗)

Pn
i=1(1− 2ε∗)i−1 > y∗ for large n, a contradiction.

Now we give a proof of the claim. It suffices to consider i = 1. Let z1
and y1 satisfy the hypothesis of the claim, and let c = y1 − z1. Fix positive
ε < min{ε∗, z1

c
}. Note that ε < 1 and cε < z1.

First assume p̃(z1, z1) = 0. Let Az1 = (max{0, z1 − c + cε}, z1 − cε).
Assume μAz1 > 0 and let z ∈ Az1 ∩ supp μ. By Lemma 12(i), p̃(z1, z1) = 0
implies p̃(y1, z) ≤ c. Either p̃(y1, z) = c or p̃(y1, z) < c. If the latter, then
y1 − p̃(y1, z) > z1. By Lemma 12(iv), y1 > z implies p̃(y1, z) > 0. It follows
that y1 − p̃(y1, z) ∈ (z1, y1). Because y1, z ∈ supp μ, by Lemma 12(v),
this implies μ(z1, y1) > 0, a contradiction. So p̃(y1, z) = c. It follows that
z + p̃(y1, z) ∈ (z1, y1). Then by Lemma 12(v), μ(z1, y1) > 0, a contradiction.
So it must be μAz1 = 0. This and the hypothesis of the lemma imply
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z1 − c + cε > 0; otherwise, Az1 = (0, z1 − cε), and this implies μAz1 > 0.
By μAz1 = 0, there exist z2, y2 ∈ supp μ such that z2 ≤ z1 − c + cε and
z1 − cε ≤ y2 ≤ z1 and μ(z2, y2) = 0.
Next assume p̃(z1, z1) > 0. Let z = max{x : p̃(x, z1) = 0}. Either

z1 − z ≥ c or z1 − z < c. If the latter, then by Lemma 12(i), p̃(z1, z1) < c.
Because p̃(z1, z1) > 0, it follows that z1+ p̃(z1, z1) ∈ (z1, y1). Then by Lemma
12(v), μ(z1, y1) > 0, a contradiction. So z1−z ≥ c. LetAz = (z+cε, z+c−cε).
Assume μAz > 0 and let z ∈ Az ∩ supp μ. By Lemma 12(i), p̃(z, z1) = 0
implies p̃(z, z1) ≤ z− z < c−2cε. Hence z1+ p̃(z, z1) < y1. By the definition
of z, z > z implies p̃(z, z1) > 0. It follows that z1 + p̃(z, z1) ∈ (z1, y1). Then
by Lemma 12(v), μ(z1, y1) > 0, a contradiction. So it must be μAz = 0. By
μAz = 0, there exist z2, y2 ∈ supp μ such that z2 ≤ z + cε and z + c− cε ≤
y2 ≤ z1 and μ(z2, y2) = 0. This establishes the claim.

Now I can prove the following proposition.

Proposition 3 If (v, μ) is a Proposition 2 steady state, then μ has full sup-
port.

Proof. Let a ≡ inf{x : μ(0, x) > 0}. By an argument in [11], supp μ
6= {0, B}.3 So a is well defined. By Lemma 14, it suffices to show a = 0.
Assume by contradiction that a > 0. Note that a ∈ supp μ.
First, we claim that μ{0} > 0. Suppose otherwise. It follows that

μ[a,B] = 1. Now, either p̃(a, a) > 0 or p̃(a, a) = 0. If the latter, then
by Lemma 12(i), p̃(a,m) = 0 for m ≥ a. But because μ[a,B] = 1, this
implies v{a} = 0, a contradiction. So p̃(a, a) > 0 or a− p̃(a, a) < a. Because
a ∈ supp μ, by Lemma 12(v), this implies μ[0, a) > 0, a contradiction.
Next, we consider two exhaustive cases for μ{a}: the first has an indivisible-

money counterpart, while the second does not.
Case 1 : μ{a} > 0. (Here, both 0 and a are mass points and there is no

mass between them.) By the argument in the proof of [11, Lemma 8], this
implies supp μ = {0, a, 2a, ..., B}. As we show in the proof of [11, Lemma
9], this implies that there exists a mapping θ from a set with at least three
positive vectors in RB/a to RB/a with the following properties: θ is concave
and strictly increasing with θ(0) ≥ 0 and has multiple positive fixed points.
That, however, is impossible.

3The argument is in the proof of Claim 1 of [11, Lemma 8]. In that proof, a < B is
taken implicitly: a = B ⇒ ρ > 1−1/B, but this and (18) lead to an obvious contradiction.
This is the needed argument.
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Case 2 : μ{a} = 0. (Here, 0 is a mass point but a is not and there is
no mass between them.) It follows that (a, a + ε) ∩ supp μ is non empty
for ε > 0. Lemma 12(v) and μ(0, a) = 0 imply p̃(a, a) ∈ {0, a}. But by the
argument in Claim 1 in the proof of [11, Lemma 8], p̃(a, a) = 0 implies a
contradiction. So p̃(a, a) = a. Then by continuity of p̃, p̃(a,m) > 0 for some
m > a. Because (a, a + ε) ∩ supp μ is non empty for ε > 0, A = supp μ ∩
{m > a : p̃(a,m) > 0} is non empty. Let b = supA. (Note that b ∈ supp μ.)
Now by μ(0, a) = 0 and Lemma 12(v), p̃(a,m) ∈ {0, a} for m ∈ supp μ, and
hence p̃(a,m) = a for m ∈ A. By continuity of p̃, this implies p̃(a, b) = a.
Then by Lemma 12(iii), p̃(x, b) ≥ a for x > a. Now fix positive ε < a
with a + ε ∈ supp μ and fix positive δ < ε/2. By p̃(a + ε, b) ≥ a > ε,
μ(0, a) = 0, and Lemma 12(v), p̃(a+ ε, b) = a+ ε. This and Lemma 12(iii)
imply p̃(x, b) = x for x ∈ (a, a+ δ). Then, by Lemma 12(v), (b+ a, b+ a+ δ)
∩ supp μ is non empty because (a, a+ δ) ∩ supp μ is non empty. Therefore,
p̃(a,m) > 0 for m ∈ (b + a, b + a + δ) implies sup A > b, a contradiction.
So fix m ∈ (b + a, b + a + δ) and let p = p̃(ε/2, b + a + ε/2). Now p = 0
and Lemma 12(i) imply p̃(a+ ε, b) ≤ a+ ε/2. But that is impossible because
p̃(a+ε, b) = a+ε. So p > 0, and then by Lemma 12(iii), p̃(a, b+a+ε/2) > 0.
But this and δ < ε/2 and Lemma 12(i) imply p̃(a,m) > 0, the desired
contradiction.

6 The concluding remarks

It has been shown that in the model studied, there exists a monetary steady
state with a strictly increasing and strictly concave value function and with
full support, a nice steady state. There are a number of restrictive assump-
tions in the model. Some are inherited from the indivisible-money model
studied in [11]. There is an arbitrary bound on individual holdings and there
are take-it-or-leave-it offers by consumers. As in [11], the bound assures that
the set of measures is compact and take-it-or-leave-it offers assure that the
mapping studied preserves concavity of value functions. A new assumption
is that u0(0) is finite. It is used to get continuity of a limit of embedded
(indivisible-money) steady-state value functions. In particular, it implies
that the slope of the embedded value functions is uniformly bounded. In-
deed, it is necessary for such boundedness. However, I doubt that finiteness
of u0(0) is necessary for continuity of the limit value function.
There are, of course, additional questions one could ask about nice steady

states. One is about local stability. A steady state (v, μ) is locally stable if for
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any μ0 close enough to μ there exists an equilibrium that approaches (v, μ).
Is at least one nice steady state locally stable? Another is about uniqueness.
As discussed in footnote 2, the model has a multiplicity of steady states.
But, are there multiple nice steady states? Finally, what can be said about
steady-state distributions of money holdings? For example, can it be shown
that the “density function” has a single peak? And, can it be shown that
the distribution does not have a mass point?
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Appendix

To complete the proofs that are relegated to the appendix, I need some
intermediate results. Those results are given below as Lemmas 15, 16, and
17. Lemma 15 is used in the proof of Lemmas 3 and 10. Lemma 16 is used
in the proof of Lemmas 9 and 10. Lemma 17, using Lemma 15 in its proof,
is the key intermediate step in the proof of Lemma 10.

Lemma 15 Let (w∆, π∆) be a Lemma 2 steady state.
(i)If b0, b1, b2 ∈ B∆ is such that b0 < b1 ≤ b2 and b0 + b2 ≤ 2b1, then

w∆(b2,∆) > Rπ∆[0, b0]βu
0(W )w∆(b1,∆).

(ii) If b1, b2 ∈ B∆ is such that b1 ≤ b2, 0 < b2 ≤ B/2, and π∆[b1, b2] ≥ 1/4,
then w∆(2b2)− w∆(b1) ≥ D/β.
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Proof. In this and subsequent proofs, the subscript ∆ is deleted from
(w∆, π∆) when it is not needed, and w∆ is suppressed from the list of argu-
ments of f and p. The proof of the lemma follows the exact logic used in the
proof of [11, Lemma 3].
(i) Fix m ∈ [0, b0]. If p(b2 −∆,m) 3 p ≥ b2 − b1, then by p ∈ Γ∆(b2,m),

f(b2,m)− f(b2−∆,m) ≥ βw(b2 − p,∆) ≥ βw(b1,∆). If p(b2−∆,m) 3 p <
b2 − b1, then by p+∆ ∈ Γ∆(b2,m),

f(b2,m)− f(b2 −∆,m) ≥ u[βw(m+ p+∆, p+∆)]− u[βw(m+ p, p)]

> u0[βw(m+ p+∆, p+∆)]βw(m+ p+∆,∆)

≥ u0[βw(b1)]βw(b1,∆).

Therefore, by the definition ofW , f(b2,m)−f(b2−∆,m) > βu0(W )w(b1,∆).
Because (w, π) is a steady state, this implies the result.
(ii) Assume by contradiction that w(2b2)− w(b1) < D/β. It follows that

w(b1 + b2, b2) = w(b1 + b2)− w(b1) < D/β. Fix m ∈ [b1, b2]. The logic used
here is similar to that used in the proof of part (i). If p(2b2−∆,m) 3 p ≥ b2,
then f(2b2,m)− f(2b2 −∆,m) ≥ βw(b2,∆). If p(b2 −∆,m) 3 p < b2, then

f(2b2,m)− f(2b2 −∆,m) > u0[βw(m+ p+∆, p+∆)]βw(m+ p+∆,∆)

≥ u0[βw(b1 + b2, b2)]βw(2b2,∆)

> βu0(D)w(2b2,∆).

Now if w(b2,∆) ≥ u0(D)w(2b2,∆), then

w(2b2,∆) > Rπ[b1, b2]βu
0(D)w(2b2,∆) ≥ (Rβ/4)u0(D)w(2b2,∆) > w(2b2,∆),

a contradiction. So it must be that w(b2,∆) < u0(D)w(2b2,∆). Then

w(2b2,∆) > Rπ[b1, b2]βw(b2,∆) ≥ (Rβ/4)w(b2,∆).

Again fix m ∈ [b1, b2]. Because p(b2 −∆,m) +∆ ⊂ Γ∆(b2,m), by the logic
used above, f(b2,m)− f(b2 −∆,m) > βu0(D)w(2b2,∆). It follows that

w(b2,∆) > Rπ[b1, b2]βu
0(D)w(2b2,∆) > (Rβ/4)

2u0(D)w(b2,∆) > w(b2,∆),

a contradiction.

Proof of Strict Monotonicity of v in Lemma 3
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Proof. Assume by contradiction that v is not strictly increasing. Because
v is concave and non decreasing, there exists a unique x2 > 0 with v(x) =
v(x2) for x ≥ x2 and v(x) < v(x2) for x < x2. Let x0 be the unique solution
for v(x2)− v(x0) = D/2. Recall by assumption, ∆ = B10−n for some n ∈ N.
Without loss of generality, assume B ∈ N. Then by taking large n and taking
some arbitrarily close approximation, we can assume that x010n, x210n ∈ N,
and, hence, x0, x2 ∈ B∆ for small∆. The approximation, if taken, can satisfy
the following essential requirements for x0 and x2: v(x) = v(x2) for x ≥ x2,
v(x2) − v(x0) < D, and v(x2) − v(x1) > 0, where x1 is defined as follows.
If x2 > 4, then let x1 = x2 − min{x2 − 2, B − x2}/10. If x2 ≤ 4, then let
x1 = x2−min{x2− x0, B− x2}/10. Also, let x3 = (x2− x1) + x2. Note that
x0, x2 ∈ B∆ ⇒ x1, x3 ∈ B∆ for small ∆.
Let ε > 0 satisfy [v(x2) − v(x1) − ε]/ε > [Rβu0(W )/4]−1. For small ∆,

we have

w∆(x1,∆)

w∆(x3,∆)
≥ [w∆(x2)− w∆(x1)]/(x2 − x1)

[w∆(x3)− w∆(x2)]/(x3 − x2)
(17)

≥ v(x2)− v(x1)− ε

v(x3)− v(x2) + ε

= [v(x2)− v(x1)− ε]/ε

> [Rβu0(W )/4]−1,

where the first inequality follows from concavity of w∆, the second from
x2− x1 = x3− x2 and w∆(xi) = v∆(xi) and lim v∆(xi) = v(xi) for i = 1, 2, 3,
and the equality from v(x3) = v(x2).
Now we discuss the two possible cases for x2.
(i) x2 > 4. Let (w∆, π∆) satisfy (17) and apply Lemma 15(i) with b0 = 2,

b1 = x1, and b2 = x3. (Note that 2+x3−x1 = 2+2(x2−x1) ≤ 2+2× x2−2
10

<
x2 − x2−2

10
≤ x1.) It follows that w∆(x3,∆) > Rπ∆[0, 2]βu

0(W )w∆(x1,∆) >
[Rβu0(W )/4]w∆(x1,∆), which contradicts (17).
(ii) x2 ≤ 4. It follows from v(8) − v(x0) = v(x2) − v(x0) < D and

lim v∆(x) = v(x) for x = 8, x0 that for small ∆,

v∆(8)− v∆(x0) < D. (18)

Let (w∆, π∆) satisfy (17) and (18). Either π∆[x0, 8] ≤ 1/2 or π∆[x0, 8] > 1/2.
If the latter, then by π∆(4, 8] < 1/4, π∆[x0, 4] > 1/4. This and Lemma
15(ii) imply v∆(8) − v∆(x0) = w∆(8) − w∆(x0) ≥ D/β, which contradicts
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(18). So π∆[x0, 8] ≤ 1/2. Then by π∆[0, 8] > 7/8, π∆[0, x0) > 3/8. Now
we apply Lemma 15(i) with b0 = x0, b1 = x1, and b2 = x3. (Note that
x0+x3−x1 = x0+2(x2−x1) ≤ x0+2×x2−x0

10
< x2−x2−x0

10
≤ x1.) It follows that

w∆(x3,∆) > Rπ∆[0, x0]βu
0(W )w∆(x1,∆) > [Rβu0(W )/4]w∆(x1,∆), which

contradicts to (17).

Proof of Lemma 6
Proof. By Lemma 5(i), p(xn−1, xn−1−∆) 6= {0}. Hence xn ≥ xn−1. This

gives part (i). Part (i) and Lemma 5(ii) imply parts (ii). Then parts (i) and
(ii) imply (iii). Now consider part (iv). Let {(x∗n, y∗n, z∗n)} for x∗0 = ∆ be as
given in Definition 2. Lemma 5(ii) and x0 ≥ ∆ imply x1 ≥ x∗1. By part (i),
xn ≥ x∗1. So it suffices to show π[0, x∗1) > ρ. We have

w(∆) = R{
Px∗1−∆

m=0 π(m)u[βw(m+∆,∆)] +
P

m≥x∗1
π(m)βw(∆)} (19)

< R{
Px∗1−∆

m=0 π(m)u0(0)βw(m+∆,∆) + π[x∗1, B]βw(∆)}
≤ Rπ[0, x∗1)u

0(0)βw(∆) +R{1− π[0, x∗1)}βw(∆),

where the equality follows from the definition of x∗1, the first inequality from
strict concavity of u and u(0) = 0, and the second inequality from concavity
of w. The desired result follows from (19) and the definition of ρ.

Lemma 16 Let (w∆, π∆) ∈ {(w∆, π∆)}∆. Let {(xn, yn, zn)} for x0 ∈ B∆\{0}
be as given in Definition 2.
(i) w∆(xn,∆) > [u

0(0)]−nw∆(x0,∆).
(ii) If zn > xn, then w∆(zn − xn,∆) > u0(W )w∆(xn,∆).

Proof. By the definition of xn, we have

βw(xn−1,∆) ≤ u[βw(xn,∆)] < βu0(0)w(xn,∆) ≤ βu0(0)w(xn)∆/xn. (20)

(The last inequality in (20) uses concavity of w and w(0) = 0.) A com-
parison of the first term with the third term in (20) gives w(xn,∆) >
[u0(0)]−1w(xn−1,∆). This implis part (i). By the definition of zn, min p(zn−
∆, 0) ≤ xn − ∆ and min p(zn, 0) ≥ xn. Then by Lemma 5(ii), xn − ∆ ∈
p(zn−∆, 0). It follows that βw(zn− xn,∆) ≥ u[βw(xn)]− u[βw(xn−∆)] >
βu0[βw(xn)]w(xn,∆). This gives part (ii).

Proof of Lemma 9
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Proof. A comparison of the first and last terms in (20) and w(xn) <
W give xn < W [u0(0)][w(xn−1,∆)/∆]

−1. This implies part (i). By part
(i) and Lemma 16(i), if w(x0,∆)/∆ is sufficiently large, then xn < 1 and
7w(xn,∆)/∆ > W/u0(W ). By concavity of w, w(7,∆)/∆ < W/7. Hence
u0(W )w(xn,∆) > w(7,∆). If zn does not exist, then {x : min p(x, 0) ≥
xn} is empty. In paricular, in a meeting between a consumer with 8 and a
producer with 0, the consumer’s spending is no more than xn − ∆. Hence
βw(8−xn+∆,∆) > u[βw(xn)]−u[βw(xn−∆)] > βu0[βw(xn)]w(xn,∆). This
and xn < 1 imply w(7,∆) > u0(W )w(xn,∆), a contradiction. So sufficiently
large w(x0,∆)/∆ implies existence of zn, and, hence, existence of yn.

Lemma 17 Let (w∆, π∆) ∈ {(w∆, π∆)}∆. Let {(xn, yn, zn)} for x0 = ∆ be
as given in Definition 2. Assume that yσ(1) exists and 8x1 ≤ B. Then there
exists C0 > 0, not dependant on ∆, such that w∆(2x1,∆) > C0w∆(∆).

Proof. In this proof, we denote σ(1) by J . We start with three claims.
Claim 0 For n ≥ 2, w∆(n∆,∆) > (Rρβ)n−1w∆(∆).
Fix m ∈ [0, x1). By the definition of x1, max p(∆,m) ≥ ∆. This and

Lemma 5(ii) imply p(n∆ −∆,m) 3 pn ≥ ∆ for n ≥ 2. Hence f(n∆,m) −
f(n∆ − ∆,m) ≥ βw(n∆ − pn,∆) ≥ βw(n∆ − ∆,∆). By Lemma 6(iv),
π[0, x1) > ρ. It follows that w(n∆,∆) > Rρβw(n∆ − ∆,∆). This and
w(∆,∆) = w(∆) imply the result.

Claim 1 If xJ+1 < 2x1 and zJ ≥ 4x1, then w∆(2x1,∆) > u0(W )[u0(0)]−Jw∆(∆).
By Lemma 6(i), xJ ≤ xJ+1. Hence xJ < 2x1. It follows that w(2x1,∆) >

w(zJ −xJ ,∆) > u0(W )w(xJ ,∆) > u0(W )[u0(0)]−Jw(∆,∆), where the second
inequality follows from Lemma 16(ii) and the third from Lemma 16(i). This
and w(∆,∆) = w(∆) imply the result.

Claim 2 If xJ+1 < 2x1 and zJ < 4x1, then there exists α > 0, not
dependent on ∆, such that w∆(2x1,∆) > αw∆(∆).
With Claims 1 and 2, we can easily prove the lemma. If xJ+1 ≥ 2x1,

then w(2x1,∆) ≥ w(xJ+1,∆) > [u0(0)]−(J+1)w(∆), where the last inequal-
ity follows from Lemma 16(i). If xJ+1 < 2x1, then by Claims 1 and 2,
w(2x1,∆) > min{u0(W )[u0(0)]−J , α}w(∆). Hence the desired C0 exists.

Now we give a proof of Claim 2.
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By Lemma 6(i), xJ ≤ xJ+1. Hence yJ < 4x1. By Lemma 8(i), this implies

π[0, 4x1] > 1/2. (21)

Let d = D/β. There are six mutually exclusive and exhaustive cases.
Case 1 : x1 ≤ 6W

d
∆. Hence 2x1 ≤ int(12W/d)∆. By concavity of w,

w(2x1,∆) ≥ w[int(12W/d)∆,∆]. By Claim 0, this implies

w(2x1,∆) > (Rρβ)
int(12W/d)−1w(∆). (22)

Case 2 : x1 > 6W
d
∆ and w(8x1)− w(4x1) ≥ d/3. It follows that

w(2x1,∆) >
w(8x1)− w(4x1)

4x1
∆ >

d

12x1
∆ >

d

12Wu0(0)
w(∆), (23)

where the last inequality follows from Lemma 9(i).
Case 3 : x1 > 6W

d
∆, w(8x1)− w(4x1) < d/3, and w(4x1) ≤ 2d/3. Hence

w(8x1) < d. This case is impossible: Lemma 15(ii) and (21) imply w(8x1) ≥
D/β = d.
The remaining 3 cases involve assumptions either about x1/2 or (x1 −

∆)/2, whichever is in B∆. The arguments are written under the assumption
that x1/2 ∈ B∆. If not, then (x1−∆)/2 ∈ B∆ would appear in place of x1/2.
Case 4 : x1 > 6W

d
∆, w(8x1) − w(4x1) < d/3, w(4x1) > 2d/3, w(4x1) −

w(x1/2) ≤ 2d/3, and π[x1/2, 4x1] ≥ 1/4. Hence w(8x1)−w(x1/2) < d. This
case is impossible: Lemma 15(ii) and π[x1/2, 4x1] ≥ 1/4 imply w(8x1) −
w(x1/2) ≥ D/β = d.
Case 5 : x1 > 6W

d
∆, w(8x1) − w(4x1) < d/3, w(4x1) > 2d/3, w(4x1) −

w(x1/2) ≤ 2d/3, and π[x1/2, 4x1] < 1/4. By (21) and the hypothesis,
π[0, x1/2] > 1/4. Now we apply Lemma 15(i) with b0 = x1/2, b1 = x1+kx1/2,
and b2 = x1 + (k + 1)x1/2 for k = 0, 1.4 By π[0, x1/2] > 1/4,

w[x1 + (k + 1)x1/2,∆] > [Rβu
0(W )/4]w(x1 + kx1/2,∆).

It follows that w(2x1,∆) > [Rβu0(W )/4]2w(x1,∆). This and Lemma 16(i)
imply

w(2x1,∆) > [Rβu
0(W )/4]2[u0(0)]−1w(∆). (24)

Case 6 : x1 > 6W
d
∆, w(8x1)−w(4x1) < d/3, w(4x1) > 2d/3, and w(4x1)−

w(x1/2) > 2d/3. Let a0 = min{x : d/3 > w(x)− w(x1/2) ≥ d/6} and a2 =

4If x1/2 /∈ B∆, then we can take b0 = (x1 − ∆)/2, b1 = x1 + k(x1 + ∆)/2, and
b2 = x1 + (k + 1)(x1 +∆)/2 for k = 0, 1.
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max{x : d/3 > w(4x1)−w(x) ≥ d/6}. By the hypothesis and concavity of w,
existence of a0 implies existence of a2. We claim that a0 exists. Otherwise,
concavity of w implies w(x1/2 +∆,∆) ≥ d/3. But then

w(x1/2) >
x1
2

w(x1/2 +∆,∆)

∆
≥ x1
2

d

3∆
>
6W

d

d

6
=W,

a contradiction. Note that 4x1 > a2 > a0 > x1/2.
First, we have

w(a2,∆) >
w(4x1)− w(a2)

4x1 − a2
∆ >

d

6

1

3.5x1
∆ >

d

21Wu0(0)
w(∆), (25)

where the second inequality follows from the definition of a2 and the last
from Lemma 9(i).
Now let a1 = a2 − (a0 − x1/2). By definition, a2 − a1 = a0 − x1/2 and

w(a0) − w(x1/2) < d/3. Hence w(a2) − w(a1) < d/3. Also by definition,
w(4x1) − w(a2) < d/3. It follows that w(4x1) − w(a1) = w(4x1) − w(a2) +
w(a2)− w(a1) < 2d/3. This and the hypothesis imply w(8x1) − w(a1) < d.
Now either π[a1, 4x1] < 1/4 or π[a1, 4x1] ≥ 1/4. If the latter, then by Lemma
15(ii), w(8x1) − w(a1) ≥ d, a contradiction. So π[a1, 4x1] < 1/4. This and
(21) imply π[0, a1] > 1/4.
By definition, w(a0)− w(x1/2) ≥ d/6. It follows that

W > w(x1/2) >
x1
2

w(a0)− w(x1/2)

a0 − x1/2
≥ dx1
12

1

a0 − x1/2
.

This and a2 − a1 = a0 − x1/2 imply a2 − a1 > dx1/(12W ). Let

i0 = int[
3x1/2

dx1/(12W )
] = int(18W/d).

Then a2 > x1/2 implies a2+ i0(a2−a1) > x1/2+3x1/2 = 2x1. Now we apply
Lemma 15(i) with b0 = a1, b1 = a2+k(a2−a1), and b2 = a2+(k+1)(a2−a1)
for k = 0, 1, ..., i0 − 1. By π[0, a1] > 1/4,

w[a2 + (k + 1)(a2 − a1),∆)] > [Rβu
0(W )/4]w[a2 + k(a2 − a1),∆].

It follows that w(2x1,∆) > w[a2 + i0(a2 − a1),∆] > [Rβu
0(W )/4]i0w(a2,∆).

This and (25) imply

w(2x1,∆) >
[Rβu0(W )/4]i0d

21Wu0(0)
w(∆). (26)
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Because cases 3 and 4 are impossible, by (22), (23), (24), and (26), the
desired α exists.

Proof of Lemma 10
Proof. We first note that x∗1 ≤ x1 and π[0, x∗1) > ρ (see the proof of

Lemma 6). Now we split the proof into two claims.
Claim 1 If xn+1 ≥ 2x∗1, then there exists cn > 0, not dependant on ∆,

such that w∆(yn,∆) > cnw∆(x0,∆).
We first derive a useful inequality. We apply Lemma 15(i) with b0 = x∗1,

b1 = xn+1 + kxn/2, and b2 = xn+1 + (k + 1)xn/2 for k = 0, 1. (Note that
xn+1 ≥ 2x∗1 ⇒ x∗1 + xn/2 ≤ xn+1.)5 By π[0, x∗1) > ρ,

w[xn+1 + (k + 1)xn/2,∆] > Rρβu0(W )w(xn+1 + kxn/2,∆).

It follows that

w(xn+1 + xn,∆) > [Rρβu
0(W )]2w(xn+1,∆). (27)

Next we discuss three mutually exclusive and exhaustive cases.
Case 1 : zn < xn+1 + xn. So yn = xn+1 + xn. By (27),

w(yn,∆) > [Rρβu
0(W )]2w(xn+1,∆). (28)

Case 2 : zn ≥ xn+1 + xn and zn ≤ 3xn. Now yn = zn. We apply
Lemma 15(i) with b0 = x∗1, b1 = xn+1 + xn, and b2 = 3xn. By π[0, x∗1) > ρ,
w(3xn,∆) > Rρβu0(W )w(xn+1 + xn,∆). This and zn ≤ 3xn and (27) imply

w(yn,∆) > [Rρβu
0(W )]3w(xn+1,∆). (29)

Case 3 : zn ≥ xn+1 + xn and zn > 3xn. Again, yn = zn. We apply
Lemma 15(i) with b0 = x∗1, b1 = zn− xn, and b2 = zn. (Note that x∗1 ≤ x1 ⇒
x∗1 + 2xn < zn.) By π[0, x∗1) > ρ, w(zn,∆) > Rρβu0(W )w(zn − xn,∆). This
and Lemma 16(ii) imply

w(yn,∆) > Rρβ[u0(W )]2w(xn+1,∆). (30)

By Lemma 16(i), w(xn+1,∆) > [u0(0)]−(n+1)w(x0,∆). Hence, by (28),
(29), and (30), the desired cn exists.

5If xn/2 /∈ B∆, then we can take b0 = a, b1 = xn+1+k(xn+∆)/2, and b2 = xn+1+(k+
1)(xn +∆)/2 for k = 0, 1. Note that xn+1 ≥ 2a and xn/2 /∈ B∆ ⇒ either xn+1 ≥ 2a+∆
or xn+1 > xn ⇒ a+ (xn +∆)/2 ≤ xn+1.
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Claim 2 If xn+1 < 2x∗1, then there exists C > 0, not dependant on ∆,
such that w∆(yn,∆) > Cw∆(∆).
The proof of this claim is analogous to the proof of Claim 1. We first

derive a useful inequality. We apply Lemma 15(i) with b0 = x∗1, b1 = 2x
∗
1 +

kxn/2, and b2 = 2x
∗
1 + (k + 1)xn/2 for k = 0, 1. (Note that xn+1 < 2x∗1 ⇒

xn/2 < x∗1.)
6 By π[0, x∗1) > ρ,

w[2x∗1 + (k + 1)xn/2,∆] > [Rρβu
0(W )]w(2x∗1 + kxn/2,∆).

It follows that

w(2x∗1 + xn,∆) > [Rρβu
0(W )]2w(2x∗1,∆). (31)

Next we discuss three mutually exclusive and exhaustive cases.
Case 1 : zn < xn+1 + xn. So yn = xn+1 + xn. By xn+1 < 2x∗1 and (31),

w(yn,∆) > [Rρβu
0(W )]2w(2x∗1,∆). (32)

Case 2 : zn ≥ xn+1 + xn and zn ≤ 3xn. Now yn = zn. We apply
Lemma 15(i) with b0 = x∗1, b1 = 2x

∗
1 + xn, and b2 = 3xn. By π[0, x∗1) > ρ,

w(3xn,∆) > Rρβu0(W )w(2x∗1 + xn,∆). This and zn ≤ 3xn and (31) imply

w(yn,∆) > [Rρβu
0(W )]3w(2x∗1,∆). (33)

Case 3 : zn ≥ xn+1 + xn and zn > 3xn. Again, yn = zn. We apply
Lemma 15(i) with b0 = x∗1, b1 = zn− xn, and b2 = zn. (Note that x∗1 ≤ x1 ⇒
x∗1 + 2xn < zn.) By π[0, x∗1) > ρ, w(zn,∆) > Rρβu0(W )w(zn − xn,∆). This
and Lemma 16(ii) and xn+1 < 2x

∗
1 imply

w(yn,∆) > Rρβ[u0(W )]2w(2x∗1,∆). (34)

Note that hypothesis and Lemma 17 imply w(2x∗1,∆) > C0w(∆). Hence
by (32), (33), and (34), the desired C exists.

Proof of Lemma 12
Proof. The proof of parts (i)-(iv) is essentially the same as the proof of

the corresponding parts of Lemma 5. Now consider part (v). If x− p̃(x,m) ∈
Q, then by continuity of p̃ (see the proof of Lemma 1), there exist open

6If xn/2 /∈ B∆, then we can take b0 = a, b1 = 2a+ k(xn +∆)/2, and b2 = 2a + (k +
1)(xn +∆)/2 for k = 0, 1. Note that xn+1 < 2a ⇒ (xn +∆)/2 ≤ a.
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sets Q1 3 x and Q2 3 m in [0, B] such that (x0,m0) ∈ Q1 × Q2 implies
x0 − p̃(x0,m0) ∈ Q. By the definition of supp μ, x,m ∈ supp μ implies
μQ1, μQ2 > 0. It follows that μQ > 0. The other part of part (v) follows in
the same way.

Proof of Lemma 13
Proof. Assume by contradiction that min{x : μ[0, x] = 1} = a < B.

Note that a ∈ supp μ. Either p̃(a, a) = 0 or p̃(a, a) > 0. If the latter, then
p̃(a, a)+a > a. Because a ∈ supp μ, by Lemma 12(v), this implies μ(a,B] >
0, a contradiction. So p̃(a, a) = 0. This implies v0−(a) ≥ u0(0)v0+(a), where
v0−(a) and v0+(a) denote the left and right derivative of v at a respectively.
(Note that if u0(0) = ∞, then a contradiction follows immediately.) Now
either μ{a} < 1/4 or μ{a} ≥ 1/4. Assume the latter. Because p̃(a, a) =
0, f̃(a + ε, a) − f̃(a, a) ≥ u[βv(a + ε, ε)] for ε > 0. Then (v, μ) being a
steady state implies v(a+ε, ε) > Rμ(a)u[βv(a+ε, ε)] ≥ (R/4)u[βv(a+ε, ε)].
Because (Rβ/4)u0(0) > 1, the equation x = (R/4)u(βx) has a unique positive
solution for x. Therefore, v(a + ε, ε) > (R/4)u[βv(a + ε, ε)] implies that
v(a + ε, ε) is bounded below by that positive solution as ε → 0. But then
v is discontinuous at a, a contradiction. So μ{a} < 1/4 and there exists
z < a with μ[0, z] ≥ 3/4. Let p = min{p(a,m) : m ∈ [0, z]}. By Lemma
12(iv) and continuity of p(., .), p > 0. Fix ε ∈ (0, p) and let m ∈ [0, z].
We have f̃(a + ε,m) − f̃(a,m) ≥ βv(a − p + ε, ε) > βv0−(a)ε. It follows
that v(a + ε, ε) > Rμ[0, z]βv0−(a)ε ≥ (Rβ3/4)u0(0)v0+(a)ε > v0+(a)ε. (Here
the second inequality follows from v0−(a) ≥ u0(0)v0+(a).) But this contradicts
strict concavity of v.

References

[1] C. Aliprantis, K. Border, Infinite Dimensional Analysis, a Hitchhiker’s
Guide, Second Edition, Springer-Verlag, New York, 1999.

[2] A. Billingsley, Convergence of Probability Measures, JohnWiley & Sons,
New York, 1968.

[3] P. Huber, Robust Statistics, John Wiley & Sons, New York, 1981.

[4] N. Kiyotaki, R. Wright, On money as a medium of exchange, J. Polit.
Economy 97 (1989), 927-54.

33



[5] E. McShane, T. Botts, Real Analysis, D. Van Nostrand Company,
Princeton, 1959.

[6] M. Molico, The distribution and prices in searching equilibrium, Ph.D.
Thesis, University of Pennsylvania, Philadelphia, 1997.

[7] S. Shi, Money and prices: a model of search and bargaining, J. Econom
Theory 67 (1995), 467-98.

[8] A. Taber, N. Wallace, A matching model with bounded holdings of
indivisible money, Internal. Econom. Rev. 40 (1999), 961-84.

[9] A. Trejos, R. Wright, Search, bargaining, money and prices, J. Polit.
Economy 103 (1995), 118-41.

[10] N. Wallace, T. Zhu, A commodity-money refinement in matching mod-
els, J. Econom Theory, forthcoming.

[11] T. Zhu, Existence of monetary steady states in a matching model: indi-
visible money, J. Econom Theory 112 (2003), 307—324.

34


