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Abstract

In a random-matching risk-sharing model, risk-sharing actions are
only monitored by the pair in the meeting, while each agent can send
his message about actions to the public. A risk-sharing outcome and
the message about the outcome are determined simultaneously, al-
lowing the message and outcome to be traded with each other. We
characterize conditions in terms of agents’continuation values for a
certain outcome to occur. We demonstrate when there is a folk the-
orem and when there is not. We show that public messages, as an
information revelation technology, treat money as a special case.
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1 Introduction

The informational roles of a variety of real-life objects motivate a strand of
literature to formulate and investigate technologies that reveal information
about past actions in randommatching models. Some of the well known tech-
nologies are labels (Okuno-Fujiwara and Postlewaite [27] and Kandori [16]),
money (e.g., Kiyotaki and Wright [18, 19]), and memory (Kocherlakota [20]):
labels are broadly interpreted as reputation, social status, credit cards, etc;
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money is interpreted as currency; and memory is an idealized technology de-
signed to be superior to money.1 With pairwise monitoring– actions taken in
each pairwise meeting are observed only by the pair of agents in the meeting,
Kandori [16] and Ellison [9] establish folk theorems with contagious equilibria
for a class of prisoners’dilemma stage games. But when the size of the pop-
ulation is increased, the discount factor must increase in order to maintain
cooperation, making cooperation harder in a larger population and impos-
sible in an infinite limit. This well-known result demonstrates the potential
usefulness of information revelation technologies to sustain cooperation by
overcoming the informational friction of pairwise monitoring among a large
population and, in turn, provides a foundation for understanding the roles
of related real-life objects in environments where many people are indirectly
linked and there is limited observation of past actions.
In this paper, we explore two interrelated questions for information rev-

elation technologies that do not eliminate pairwise monitoring. First, what
is the extent of cooperation that can be sustained by these technologies?
Secondly, can one technology be identified as a special case of another whose
information-revelation function is well understood? Because pairwise moni-
toring remains as a primitive, the technologies in consideration can only help
a third party to infer actions in a meeting. Such technologies include money
(representing currency), but neither labels nor memory,2 and would be well-
suited, if appropriately formulated, to represent real-life objects (other than
currency) that have analogous properties. Notably, checks and credit cards,
commonly substituted for currency, seem to be real-life objects of this sort:
if paying by currency does not alter that only a buyer and seller observe the
transfer of a good between them, then paying by a check or a card seems not

1In monetary economics, the informational role of money is first exploited by Ostroy
[29], describing money as a record keeping device, a term widely used in the subsequent
literature even when trade is not pairwise (e.g., Townsend [34] and Kocherlakota [20]); the
first infinite-horizon model with pairwise monetary trade is formulated by Diamond [8].
In [20] memory is also defined when matching is not pairwise. Kocherlakota and Wallace
[22] formulate a stochastic version of memory; similar technologies also appear in other
applications of matching models (e.g., Dixit [7], and Tirole [33]). Matsui [26] compares
matching models for labels, money, and memory.

2With labels, the information about actions in each pairwise meeting is truthfully trans-
mitted to (or, equivalently, these actions are observed by) some institution that updates
the labels based on the information; two agents in the meeting can observe only each
other’s label. With memory, the information about one’s past actions is accessible to (or,
equivalently, these actions are observed by) his direct and indirect matching partners.
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to either. Determining the extent of cooperation (the first question) helps
to demarcate constraints on cooperation caused by pairwise monitoring from
constraints caused by technology-specific physical or institutional character-
istics; after all, money and a technology representing credit cards ought to
have different characteristics. It also opens the door to future explorations;
for example, if money is ineffi cient in that it sustains less cooperation than
alternative technologies, what changes to the model would make money ef-
ficient? Identification of one technology with another (the second question)
helps to define an exact sense in which the former (e.g., money) reveals in-
formation about past actions.
For our purposes, we study an idealized technology– public messages,

i.e., each agent can send messages about actions in his present meeting to
the public. Public messages are not new in repeated games with private
monitoring when the stage game is played by a fixed set of agents. Indeed,
Ben-Porath and Kahneman [3] establish a folk theorem for a class of such
games with partial (i.e., private but perfect) monitoring.3 As the distinct
feature in our employment of public messages, people are able to exchange
messages with other transferable objects of value– message trading. In other
words, we consider not only the individual incentive constraint for certain
messages to be transmitted but also the multilateral, bilateral in our context,
constraint.
To see how message trading may arise and restrict the effectiveness of

messages in sustaining cooperation, consider a one-shot cake-sharing example
with two players, A and B, and an arbitrator. The arbitrator gives one unit
of the cake to player A and announces a reward scheme designed to yield an
even split based on each player’s message about the shares of the cake they
respectively receive. Then the players share the cake and create messages
with some device (e.g., written on paper) in a spot without the arbitrator.
After receiving each player’s message, the arbitrator allocates rewards. Think
of a scheme that gives B a constant reward. Absent of message trading, B
does not have an incentive to lie. With B telling the truth, if the reward
to A suitably varies with B’s message, then A will transfer half the cake to
B. But message trading undermines this scheme: What if A, deviating from
transferring half, eats 2/3 of the cake, and then offers the remaining 1/3 to

3There are also folk theorems for a class of such games with imperfect private moni-
toring (e.g., Compte [6] and Kandori and Matsushima [17]). Mailath and Samuelson [24]
provide a general reference for repeated games.
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B in exchange for a message that gives A the highest reward, a mutually
beneficial exchange?
This example also relates messages and message trading to money and

monetary exchange. Suppose the arbitrator gives each player some tokens
(money) before they enter the room and allocates awards according to play-
ers’post-sharing token holdings instead of messages. Tokens have the same
informational role as messages. So we treat message trading as a generaliza-
tion of monetary exchange in matching models (e.g., Kocherlakota [20], Shi
[32], and Trejos and Wright [35]); that is, message trading is governed by a
game form (e.g., the ultimatum game) and, if by playing the game form play-
ers reach an agreement to exchange some cake for both players’messages,
then they are committed to carrying it out on the spot.4

In the example, having the creation of messages be part of the cake-
sharing game helps to relate money to messages, but is not necessary for
message trading. Suppose the cake sharing and creation of messages occur
sequentially in two distinct spots. Message trading may arise when the ar-
bitrator is not at either spot and some valuable object is available at the
message-creation spot.5 This sequential setup could represent some real-life
uses of messages (e.g., customer reviews and credit scores). In the conclusion,
we discuss how our analysis can be largely extended to this setup and the
emergence of new conceptual issues (e.g., hard evidence).
Formally, we study a (repeated) random-matching risk-sharing model

with a continuum of agents. One agent in each pair is randomly chosen
to receive some cake; who is chosen is public to all agents. The size of the
cake can be a random variable whose value is either one or zero. The realiza-
tion of the cake size (when the size is random) and how the agents divide it
are pairwise monitored and are described in each agent’s public message. We
adapt perfect public equilibrium in a natural way. To capture the essence
of message trading– two parties seeking mutually beneficial outcomes– we
introduce two refinements, coalition proofness (CP) and renegotiation proof-
ness (RP). Each refinement is static in that it is only applied to plays in the
trading game of each meeting.

4By way of making message trading possible, this on-the-spot commitment restricts the
effectiveness of messages in sustaining cooperation; it does not extend to actions outside
the spot.

5If the arbitrator is at the message-creation spot, then he can deter message trading,
resembling the setup in Ben-Porath and Kahneman [3] with public incrimination in a
collective meeting.
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We characterize the magnitudes of rewards and punishments, in terms
of agents’continuation values, necessary and suffi cient for a certain transfer
to occur in the meeting. With CP, it is necessary to reward an agent for
him to reveal that his meeting partner makes a transfer smaller than the one
specified by the equilibrium. With RP, when the size of the cake is random,
the model has a property akin to the familiar incentive compatibility in the
centralized risk-sharing models with private information (e.g., Atkeson and
Lucas [2] and Green [11]).6

With CP there is a folk theorem. With RP, if the size of the cake is not
random (always equal to one), then the folk theorem holds but requires a
higher greatest lower bound on the discount factor than the CP counterpart;
otherwise, the folk theorem does not hold and the welfare loss does not vanish
as the discount factor approaches one. But some continuity is preserved from
randomness to certainty.
Money is a special case of public messages that supports a more restric-

tive message space and, hence, no more equilibrium allocations than public
messages. Following Kocherlakota [20], it is well understood that when there
is memory, money is not essential. When pairwise monitoring is a primitive,
our result suggests a complementary view: If public messages are costless to
maintain, then money is not essential; otherwise, money is essential when it
is not dominated by another information revelation technology in terms of
social benefits net costs.
This view of essentiality seems useful to model non-cash payment methods

such as checks and credit cards, which, as elaborated on below, involve two
tiers of information revelation. The primary tier is for transfers of goods;
the secondary tier, a tier necessary for the credit feature of these payment
methods, is for related payment histories. To see relevance of this point,
one may think of mapping goods paid by credit cards into cash-in-advance
models as credit goods or cash goods, or modelling a cashless economy in
which goods are all paid by non-cash payment methods.7

6In our model there is no private information (the endowment realization is pairwise
monitored), and the redistribution of resources is decentralized (pairwise) and not public
(pairwise monitored).

7Woodford [38] provides a well-known model for a cashless economy, i.e., a cash-in-
advance model with 100% credit goods, where no payment method is needed. Notably,
credit goods are interpreted differently by users of cash-in-advance models. For example,
they may be non-market goods (cf. Lucas and Stokey [23]); they may be goods paid by
checks (cf. Aiyagari and Eckstein [1]); they may exclude goods paid by checks (cf. Hodrick,
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2 The basic model

Time is discrete, dated t ≥ 1. There is a nonatomic measure set I of infinitely
lived agents. At the start of each date, each agent is subject to an i.i.d. shock
that determines his type: with equal probability he becomes a buyer or a
seller. This type realization is public information– information known to all
agents. Then each buyer is randomly matched with a seller. The matching
realization, i.e., the identity of each agent in each meeting, is also public
information.
In each meeting, the buyer is endowed with 0 units of a good; the seller’s

endowment of the good is an i.i.d. variable: it is 1 with probability ρ ∈ (0, 1]
and 0 with probability 1−ρ. When ρ < 1 the seller’s endowment realization is
pairwise public information– meeting-specific information observed only by
the pair of agents in the meeting (i.e., the realization is pairwise monitored).
After the endowment realization, the meeting consists of two consecutive
stages.
Stage 1. The seller chooses to consume any part of his endowment. This

consumption is pairwise public information.
Stage 2. The buyer and seller play an extensive game form prescribed by

a given trading mechanism as defined below. In the game form, there is no
move of nature; each history is pairwise public information; and each terminal
node is an outcome. An outcome, denoted (y, r), consists of a transfer of y
units of the good (from the seller to buyer) and a report r. A report, denoted
r = (r1b , r

2
b , r

1
s , r

2
s) ∈ {0, 1} × [0, 1] × {0, 1} × [0, 1], consists of messages that

the buyer and seller input into a reporting device available in the meeting,
where r1b and r

2
b (r

1
s and r

2
s , respectively) are the buyer’s message (the seller’s,

respectively) regarding the seller’s endowment realization and the transfer of
the good, respectively. In any non-terminal play of the game form, the good
is not transferred or consumed and there is no input into the reporting device.
There is a kind of non terminal play called autarky which means both agents
simultaneously announce an element in {0, 1}× [0, 1]. Autarky is followed by
terminal nodes each of which is referred to as an autarky outcome, i.e., y = 0
and r with the elements that agents announced in autarky. A terminal node
that does not follow autarky is referred to as a trading outcome.
After the meeting, the report becomes public information (no other pair-

Kocherlakota, and Lucas [14], who map M2 to the stock of money in their model); and
they seem to include market goods in [38].
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Figure 1: Sequence of events.

wise public information of the meeting becomes public information); the good
is consumed; any unconsumed good perishes; and then the date is over.
From consuming c during the date, the seller’s period utility is c (his

stage-1 consumption is part of c), and the buyer’s is u(c) with u(0) = 0,
u′ > 0, and u′′ < 0.8 To make a positive transfer ex-ante more desirable than
a zero transfer, let

q∗ ≡ arg max[u(q) + (1− q)] > 0. (1)

Each agent maximizes the expected discounted utility normalized by 1 − δ,
where δ ∈ (0, 1) is the discount factor.
The following notation is used throughout. Let θi,t = 0 if agent i ∈ I is

a buyer at t and θi,t = 1 if a seller. Let φi,t ∈ I be i’s meeting partner at
t. For the date-t meeting between i and φi,t, let ωi,t ∈ {0, 1} be the seller’s
endowment realization, let c1,i,t ∈ [0, ωi,t] be the seller’s stage-1 consumption,
and let ri,t = (r1i,b,t, r

2
i,b,t, r

1
i,s,t, r

2
i,s,t) be the report of the meeting. (Notice that

ωk,t = ωj,t, c1,k,t = c1,j,t, and rk,t = rj,t if j = φk,t.) For x ∈ {θ, φ, ω, r}, let
xτi = (xi,0, ..., xi,τ ) with xi,0 = i for τ ≥ 0.

Definition 1 A trading mechanism T is a collection of mappings (Ti,t)i∈I,t≥1
such that for any (θti, φ

t
i, r

t−1
i )i∈I , k, ωk,t, and c1,k,t, the mapping Tk,t pre-

scribes to agents k and φk,t an extensive game form at stage 2 in their date-t
meeting.

8Linearity of the seller’s utility is without loss of generality. When the buyer and seller
have concave and strictly increasing utility functions, say, ub and us, respectively, we can
make the transformation by setting u(c) = ub(ν

−1(c)) with ν(c) = us(1)−us(1− c). Also,
we can extend our analysis to weakly concave u. Strict concavity simplifies exposition of
Proposition 4 and its proof, but it is not substantial for this proposition and any subsequent
result.
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By definition, Tk,t = Tj,t, j = φk,t. (As convention, i stands for a generic
agent on the set I; k serves the same role when i is employed in the same
context.) This definition follows closely the one in Kocherlakota [20]. Follow-
ing [20], the prescribed game form satisfies no commitment in that following
any (ωk,t, c1,k,t), k has a sequence of actions leading to autarky, independent
of any sequence of actions chosen by φk,t (e.g., ultimatum games); also, the
game form ends before the date is over.9

The matching process, the endowment process, the seller’s action at stage
1, the trading mechanism T applied to stage 2, and the preferences define
a game. We restrict our attention to what we call quasi-public strategies,
adapted from public strategies in a natural way (consistent with the ones
adopted in [20]).

Definition 2 A strategy σk = (σk,t)t≥1 of agent k is a quasi-public strategy
if for any t, when k moves at any information set at his date-t meeting,
σk,t only conditions on the public information, i.e., (θti, φ

t
i, r

t−1
i )i∈I , and the

meeting-specific pairwise public information, i.e., ωk,t and actions already
taken by k and φk,t during the meeting.

If σk is a quasi-public strategy, then σk,t specifies the same action on two
information sets of k in his date-t meeting which differ only in the pairwise
public information pertaining to his meetings before t.10

Our equilibrium concept is perfect equilibrium and we only consider pure
strategy equilibrium (also consistent with [20]).11

Definition 3 Given a trading mechanism T , a profile of strategies σ =
(σi)i∈I is an equilibrium if for any i the strategy σi is a pure quasi-public
strategy and if evaluated at any history of the game σ determines a Nash
equilibrium.

9This can be achieved if the game form is a multistage form with a finite number of
stages or, even with an infinite number of stages if the duration of a stage shrinks at a
geometric rate.
10It would be natural to let σk,t also depend on pairwise public information of meetings

between k and φk,t before t. As I is a continuum, adding such dependence does not change
any result.
11Pure strategy certainly is not restrictive for the folk-theorem results. With a pure

strategy, no move of nature in the trading game form, and deterministic outcomes of the
trading game form, we avoid some technical issues seemingly not critical to other results.
Refinements in Definitions 5 and 6 do require an equilibrium outcome not to be dominated
by lotteries over outcomes.
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Definition 4 An allocation f is a collection of mappings (fi,t)i∈I,t≥1 such
that for any (θti, φ

t
i, ω

t−1
i )i∈I , k, and ωk,t, the mapping fk,t prescribes to agents

k and φk,t a transfer of goods (i.e., fk,t((θ
t
i, φ

t
i, ω

t−1
i )i∈I , ωk,t)) in their date-t

meeting.

By definition, fk,t = fj,t, j = φk,t. Also by definition, the transfer pre-
scribed by fk,t depends only on the history of the physical environment (in
particular, not on how the transfer is monitored or any technology that fa-
cilitates monitoring).
An allocation f is supported by an equilibrium σ if for any (θti, φ

t
i, ω

t−1
i )i∈I ,

k, and ωk,t, the transfer specified by fk,t coincides with the transfer of goods
determined by on-path plays of σ.

3 Perfect monitoring benchmark

To examine the role of public messages to sustain cooperation under pair-
wise monitoring, we introduce the following variant of the basic model as
the benchmark. In each pairwise meeting, stage 1 is unchanged; at stage 2
the seller chooses a transfer and there are no reports; and the seller’s en-
dowment realization and the transfer of the good become public information
after the meeting. We refer to this no-report perfect-monitoring model as
the perfect-monitoring benchmark. The equilibrium concept is adapted from
Definition 3. Specifically, T is redundant and when θk,t = 1, σk,t conditions
on (θti, φ

t
i, ω

t−1
i , qt−1i )i∈I , ωk,t, and k’s own action already taken in the meet-

ing, where qt−1i = (qi,0, ..., qi,t−1), qi,τ is the transfer of the good in the date-τ
meeting between i and φi,τ , and qi,0 = i.

Proposition 1 An allocation f is supported by an equilibrium in the basic
model if and only if it is supported by an equilibrium in the perfect-monitoring
benchmark.

Proof. For the “if”part, let f be supported by an equilibrium σ in the
benchmark. To describe T ′ and σ′ in the basic model, fix γt ≡ (θti, φ

t
i, r

t−1
i )i∈I ,

k, and ωk,t. Given γt, set ωi,τ = r1i,b,τ if 1 ≤ τ < t and let µt = (θti, φ
t
i, ω

t−1
i )i∈I ;

also let Λt = 0 if r2i,b,τ · r2i,s,τ = 0 for some i and 1 ≤ τ < t, and let Λt = 1
otherwise. In the game form prescribed by T ′k,t following c1,k,t, k and j =
φk,t simultaneously say Yes or No. If both say Yes and 1 − c1,k,t ≤ yk,t ≡
fk,t(µt, ωk,t), then the outcome is (yk,t, r) with r = (ωk,t, 1, ωk,t, 1); otherwise
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autarky is reached. Actions specified by σ′k,t are as follows. At stage 1
choose c1,k,t = 0 if θk,t = 1. At stage 2 say Yes iff Λt = 1; in autarky
announce (ωk,t, 0). (We only describe σ′k,t because of k’s representative role.)
To see that σ′ is an equilibrium, the case worth of checking is that given
(γt, ωk,t, c1,k,t) with θk,t = Λt = 1 and yk,t ≥ 1 − c1,k,t > 0, k does not gain
by saying No if all other agents do not deviate from t on and there is no
further deviation of k. Saying Yes in σ′ gives k the same payoff as his on-
path play in σ given (µt, ωk,t) (i.e., the payoff implied by f given (µt, ωk,t)).
Saying No in σ′ gives k the payoff (1 − δ) · 1 + δ · 0.5ρ (k’s No triggers the
global autarky from t+1– each agent eats his own endowment forever– so
k’s start-of-t+1 continuation value is 0.5ρ); deviating to qk,t = 0 in σ gives k
the payoff (1− δ) · 1 + δ · v for some v ≥ 0.5ρ (k can guarantee himself 0.5ρ).
Because σ is an equilibrium, k does not gain by saying No in σ′. The proof
of the “only-if”part is in the appendix.

The “only-if”part of Proposition 1 says that perfect monitoring sets an
upper bound on what public messages can achieve.12 The logic for this part
is simple. For an agent, on-path payoffs in σ′ in the benchmark and in σ in
the basic model are the same (i.e., the payoffs implied by f). With perfect
monitoring, his continuation value following a deviation in σ′ can be ensured
not to exceed his continuation value following a deviation in σ, while the
deviation in σ′ need not trigger the global autarky (which is not the case for
σ′ in the proof of the “if”part).
For σ′ in the proof of the “if”part, when there is no defector up to the

start of t but c1,k,t ∈ (1− yk,t, 1], Tk,t only admits the autarky outcomes even
though for k and j these outcomes are Pareto dominated by y ∈ [0, 1− c1,k,t]
and r = (1, 1, 1, 1).13 This illustrates weakness of Definition-3 equilibrium in
capturing the essence of message trading– two parties seek mutually benefi-
cial outcomes– in the absence of further restrictions on T , motivating refine-
ments in the next section.
12In spirit, the “only-if” part resembles the money-is-memory result in Kocherlakota

[20], which generalizes the result in Townsend [20] that compares money with a technology
called communication, serving the function of perfect monitoring. Further comments follow
Proposition 10.
13To establish the converse of the money-is-memory result, Kocherlakota [21] uses a

similar trick. In particular, while a seller with on-path money holdings and a buyer with
off-path holdings have incentives to trade (the seller can keep post-meeting holdings on
path and the buyer can get goods), the game form only admits autarky outcomes.
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4 Refinements and partial characterization

Here we introduce two refinements for a Definition-3 equilibrium σ, coalition
proofness (CP) and renegotiation proofness (RP). Each refinement is static
in that it only places restrictions on the strategies of agents k and j = φk,t
played in the game form prescribed by Tk,t (for any k and t). For each
refinement, we also characterize conditions on the continuation values for a
transfer to occur between k and j.
We begin with CP, which is the Coase Theorem in our context. That is,

σk,t and σj,t lead k and j to a pairwise effi cient outcome in the game form.14

An outcome of the game form is pairwise effi cient if it is not pairwise Pareto
dominated (in terms of payoffs implied by σ) by any lottery over the set of
all (physically) feasible outcomes, regardless of being admitted by the game
form or not.

Definition 5 Given a trading mechanism T , an equilibrium σ (Definition 3)
is a CP equilibrium if for any (θti, φ

t
i, r

t−1
i )i∈I , k, ωk,t, and c1,k,t, σk,t and σj,t

(j = φk,t) specify a pairwise effi cient outcome in the game form prescribed by
Tk,t.

The next result says that in order to induce the seller to make a transfer in
a CP equilibrium, it is necessary not just to punish the seller if his deviation
to a smaller transfer is revealed (i.e., the conventional participation constraint
of the seller) but also to reward the buyer to reveal that deviation.15

Proposition 2 Let σ be a CP equilibrium. Fix t, (θti, φ
t
i, r

t−1
i )i∈I , and k

with θk,t = 0 (k is a buyer). Suppose that σk,t and σj,t (j = φk,t) specify an
outcome (y∗, r∗) with y∗ > 0 when ωk,t = 1, and an outcome (y◦, r◦) following
some c1,k,t = c > 1−y∗. Let vi(r) be agent i’s start of t+1 continuation value
implied by a report r from the meeting, i ∈ {k, j}. Then vk(r◦)− vk(r∗) > 0
and vj(r∗)− vj(r◦) ≥ α(δ)(y∗ − y◦), where α(δ) = δ−1(1− δ).

Proof. If vj(r∗) − vj(r◦) < α(δ)(y∗ − y◦) then j can gain by deviating
to consume c at stage 1 and reach (y◦, r◦) at stage 2. If vk(r◦)− vk(r∗) ≤ 0

14Such a solution concept is used in the literature on labor and monetary matching and
search models; e.g., Hall [13], Hu, Kennan and Wallace [15], and Zhu and Wallace [39].
15So the equilibrium in the proof of the “if” part of Proposition 1 cannot be a CP

equilibrium.
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then given vj(r∗) − vj(r
◦) > 0 (by c > 1 − y∗, y◦ < y∗), (y◦, r◦) is Pareto

dominated by (y◦, r∗).

It is helpful to cast Proposition 2 in the context of a one-shot game
followed by payoffs measured in utils (i.e. the continuation values) that are
allocated by a third party (e.g., the cake-sharing game with the arbitrator
in the introduction). Let the buyer and seller have a discount factor 1/α(δ)
when the third party allocates payoffs and normalize both agents’on-path
payoffs to zero. For y∗ to be transferred, vk(r◦) − vk(r∗) > 0 gives a lower
bound on the third party’s payoff capacity to reward the buyer, i.e., any
small but positive number; vj(r∗)−vj(r◦) ≥ α(δ)y∗ (set y◦ = 0) gives a lower
bound on the third party’s payoff capacity to punish the seller, i.e., α(δ)y∗.
As it turns out, the third party’s capacities reaching these bounds is suffi cient
for y∗ to be transferred. Here we do not prove suffi ciency– it is a natural
ingredient in the folk theorem with CP equilibrium in the next section.

Next we turn to RP, which restricts payoffs of pairwise Pareto dominated
outcomes in the game form prescribed by Tk,t. The idea is that if one agent,
say j, deviates (in a CP equilibrium) and a pairwise dominated outcome is
reached, k and j will renegotiate to an effi cient term. Furthermore, if the
renegotiated term makes j better off than the one implied by σk,t and σj,t, j
would deliberately deviate in the first instance. This is the same idea that
motivates RP in models in the Nash-implementation literature. To determine
how renegotiation selects an effi cient term, we follow a standard treatment
in that literature (cf. Maskin and Moore [25]) by letting renegotiation be a
mapping that operates on a class of sets. A set in the class consists of lotteries
over all feasible outcomes at the point from which an ineffi cient outcome of
the prescribed game form is reached. The mapping selects from the set
a lottery, possibly degenerate, that is pairwise effi cient (i.e., not pairwise
Pareto dominated by another lottery in the set). Following a widespread
convention, we restrict attention to a special mapping, one that selects a
lottery to maximize the Nash product with equal weights on the buyer and
seller, and with the reached ineffi cient outcome serving as the disagreement
point.16

16Nash bargaining is widely adopted in the literature on labor and monetary matching
and search models. Here, if we explicitly formulate the renegotiation process as the familiar
alternating-offer bargaining game with an exogenous break-down probability, then, as is
well known, the Nash solution is the limit of the equilibrium outcomes of the bargaining
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Definition 6 Given a trading mechanism T , a CP equilibrium σ is a RP
equilibrium if for any (θti, φ

t
i, r

t−1
i )i∈I , k, ωk,t, and c1,k,t, σk,t and σj,t (j =

φk,t) remain an equilibrium in the game form prescribed by Tk,t when each
pairwise ineffi cient outcome in terminal nodes is replaced with a lottery over
all feasible outcomes that maximizes the Nash product of k and j’s payoffs
with the ineffi cient outcome serving as the disagreement point.

Renegotiation-proofness implies a property that resembles the familiar
incentive compatibility. That is, if the endowment realization is stochastic
(i.e., ρ < 1), then to prevent the seller from deviating when he is endowed,
he will be punished and the buyer will be rewarded when he turns out to be
not endowed. In the context of the above one-shot game, this means that the
third party’s payoff capacities to reward the buyer and punish the seller must
be utilized when the seller is not endowed. Formally we have the following.

Proposition 3 Let ρ < 1. Let σ be a RP equilibrium. Fix t, (θti, φ
t
i, r

t−1
i )i∈I ,

and k with θk,t = 0. Let j, (y∗, r∗), and vi(.) be given by Proposition 2.
Suppose that σk,t and σj,t specify an outcome (0, r) when ωk,t = 0. Then
vk(r)− vk(r∗) > 0 and vj(r∗)− vj(r) ≥ α(δ)y∗.

Proof. Let (y◦, r◦) be the one in Proposition 2 when ωk,t = c1,k,t = 1 (so
y◦ = 0). By Proposition 2, it suffi ces to show that∆k ≡ vk(r

◦)−vk(r) = 0 and
∆j ≡ vj(r) − vj(r

◦) = 0. Suppose the converse so ∆k∆j > 0 (σ is a CP
equilibrium). Without loss of generality, we assume that ∆k,∆j > 0, and
that (y, r) and (y◦, r◦) are trading outcomes. In the game form following
c1,k,t = ωk,t = 1, referred to as game I, let r̃ = (r̃b, r̃s) (r̃b, r̃s ∈ {0, 1} × [0, 1])
be the report specified by σk,t and σj,t following the history where k adheres
to σk,t but j deviates to autarky. In the game form following ωk,t = 0, referred
to as game II, let r̂ = (r̂b, r̂s) (r̂b, r̂s ∈ {0, 1} × [0, 1]) be the report specified
by σk,t and σj,t following the history where j adheres to σj,t but k deviates to
autarky. Let r̆ = (r̃b, r̂s). For σ to be an equilibrium, vk(r̂) ≤ vk(r) (k does
not deviate to autarky in game II) and vk(r̆) ≤ vk(r̂) (k does not deviate
to announce r̃b at autarky after autarky is reached). By the same argument
(applied to j and game I and j’s deviation to r̂s at autarky), vj(r̃) ≤ vj(r

◦)
and vj(r̆) ≤ vj(r̃). So (0, r̆) is dominated by (0, r◦) and (0, r) (∆k,∆j > 0).

game as the break-down probability approaches 0 (cf. Osborne and Rubinstein [28, Ch
4.2]). Also, it is easy to generalize the analysis for equal weights on the buyer and seller
to non equal weights.
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Let (0, r′) maximize the Nash product with the disagreement point (0, r̆)
given there is no good remaining. (Without loss of generality we treat r′

as a report while it may be a lottery over reports.) Because k can obtain
(0, r̆) given j does not deviate in game II, for σ to be a RP equilibrium,
vk(r

′) ≤ vk(r) (k does not gain by renegotiation). By the same argument
(applied to j and game I), vj(r′) ≤ vj(r

◦). But then (0, r′) is dominated by
(0, r◦) (∆k > 0), a contradiction.

In the above proof, r̆ is constructed to deal with the concern that following
different plays reaching autarky, the reports specified by σk,t and σj,t need
not all have the same continuation values and need not all be ineffi cient.
The key to Proposition 3 is that renegotiation enforces the on-path report
following ωk,t = c1,k,t = 1 equivalent to the on-path report following ωk,t = 0
in continuation values. CP does not impose such equivalence, which is critical
for why in the next section there is a folk theorem with CP equilibrium but
not with RP equilibrium when ρ < 1.
The next result is parallel to Proposition 2. Cast into the above one-shot

game, it pertains to the reward and punishment capacities of the third party,
necessary and suffi cient for y∗ to be transferred in a RP equilibrium; again,
suffi ciency is not established here for it arises naturally below. Effectively,
this result also implies the greatest lower bounds on vk(r)−vk(r∗) and vj(r∗)−
vj(r) in Proposition 3.
For this result, we first identify the space of some relevant reports with an

interval. Then RP implies that vk(.) and vj(.) are continuous and monotonic
and satisfy a functional inequality. The main challenging problem is to find
from vk(.) and vj(.) with these properties the pair such that vk(.) has the
minimal increment over the interval given the increment of vj(.). To solve
the problem, we develop a technique built on theory of integral equation.
The result is centered around the function x 7→ ϕ(x, y, l, δ) on [0, y] defined
by

ϕ(x, y, l, δ) = − α(δ)

l − α(δ)y

∫ x

0

α(δ)u(τ)

exp[ α(δ)
l−α(δ)y (x− τ)]

dτ (2)

for l > α(δ)y > 0. Formally we have the following.

Proposition 4 Let σ be a RP equilibrium. Fix t, (θti, φ
t
i, r

t−1
i )i∈I , and k

with θk,t = 0. Let j, (y∗, r∗), and vi(.) be given by Proposition 2. Let
l∗k = supr[vk(r)− vk(r∗)] and l∗j = supr[vj(r

∗)− vj(r)]. Then l∗k ≥ ϕb(y
∗, l∗j , δ)
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and l∗j ≥ ϕs(y
∗, δ). Here ϕs(y, δ) = min{l > α(δ)y : ϕ(x, y, l, δ) is con-

cave in x} for y > 0, and ϕb(y, l, δ) = −ϕ(y, y, l, δ) for l > α(δ)y > 0;
ϕs(y, δ) is defined, ϕ(x, y, l, δ) is concave in x iff l ≥ ϕs(y, δ), and ϕs(y, δ) ∈
(0.5α(δ)ν(y), α(δ)ν(y)) with ν(y) = u(y)/u′(y) + y.

Proof. We outline the proof here and verify some intermediate results
in the appendix. The starting point is the stage-2 game form following j
consuming some c ∈ [1 − y∗, 1) at stage 1 when ωk,t = 1. Denote by (x, rx)
the outcome of this game form specified by σk,t and σj,t. Result 1 (verified
in the appendix) says that x = 1− c, and there exists a report r̆x such that
(0, r̆x) is Pareto dominated by (x, rx) and each of k and j can obtain (0, r̆x)
given the other does not deviate. (Here (0, r̆x) has the similar role as (0, r̆)
in the proof of Proposition 3.) Then for σ to be a RP equilibrium, (x, rx)
must maximize the Nash product with the disagreement point (0, r̆x) given
1− c units of good remaining and, in particular, it cannot be dominated by
the transfer x and a lottery over rx and an arbitrary report r. So letting

Gk(z; r, x) = α(δ)u(x) + z[vk(r)− vk(rx)] + [vk(rx)− vk(r̆x)],
Gj(z; r, x) = −α(δ)x+ z[vj(r)− vj(rx)] + [vj(rx)− vj(r̆x)],

we have Gk(0; r, x) > 0, Gj(0; r, x) > 0, and

0 ∈ arg max
z∈[0,1]

Gk(z; r, x)1/2Gj(z; r, x)1/2. (3)

Next we treat c as a variable over [1 − y∗, 1) and obtain two functions
x 7→ v(x) ≡ vk(rx) and x 7→ w(x) ≡ vj(rx) on (0, y∗]. Result 2 says that−v(.)
and w(.) are nondecreasing and continuous on (0, y∗], and that v(0)−v(y∗) <
α(δ)u(y∗) and w(y∗)−w(0) ≥ α(δ)y∗ with (v(0), w(0)) = limx↓0(v(x), w(x)).
(Monotonicity here is stronger than Proposition 2 which only deals with y∗

and y◦.) For x ∈ [0, y∗], define

v̂(x) = v(x)− [vk(r
∗) + l∗k], (4)

ŵ(x) = w(x)− [vj(r
∗)− l∗j ]. (5)

Because vk(r∗) + l∗k ≥ vk(r̆x) and vj(r̆x) ≥ vj(r
∗)− l∗j (by definition of l∗k and

l∗j ), in (3) setting r = rx′ and using ŵ(x) − α(δ)x > 0 (by Gj(0; r, x) > 0),
we have

v̂(x)− v̂(x′) ≥ α(δ)u(x) + v̂(x)

ŵ(x)− α(δ)x
[ŵ(x′)− ŵ(x)], 0 < x < x′ ≤ y∗. (6)
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Next from (6) we derive (v̂(.), ŵ(.)) with (−v̂(0), ŵ(0)) ≥ (0, 0) and the
properties inherited from result 2 that minimize v̂(0)−v̂(y∗). We first consider
continuously differentiable v̂(.) and ŵ(.) with ŵ(0) > 0 (so only the basic
calculus is used). Let

∆(x) = −v̂′(x) + [α(δ)u(x) + v̂(x)]h(x), (7)

h(x) =
−ŵ′(x)

ŵ(x)− α(δ)x
. (8)

From (7) (and v̂(x)− v̂(0) =
∫ x
0
v̂′(τ)dτ) we have

v̂(x) = [v̂(0) + α(δ)

∫ x

0

h(τ)u(τ)dτ −
∫ x

0

∆(τ)dτ ] +

∫ x

0

h(τ)v̂(τ)dτ . (9)

Taking ∆(.) and h(.) and v̂(0) as given, (9) defines an integral equation in
v̂(.) which has a unique solution v̂(x) = v̂1(x) + v̂2(x) with

v̂n(x) = mn(x) +

∫ x

0

mn(τ)h(τ)K(τ ;x)dτ , (10)

wherem1(x) = α(δ)
∫ x
0
h(τ)u(τ)dτ ,m2(x) = v̂(0)−

∫ x
0

∆(τ)dτ , andK(τ ;x) =
exp[

∫ x
τ
h(ζ)dζ] (cf. [30, Ch 9.1-1, p.459; Ch 2.9-1.2, p.171]). Result 3 says

that

v̂1(x) = α(δ)

∫ x

0

u(τ)K(τ ;x)h(τ)dτ , (11)

v̂2(x) = v̂(0)K(0;x)−
∫ x

0

K(τ ;x)∆(τ)dτ . (12)

By (11) and h(τ) ≤ 0 (ŵ′(τ) ≥ 0 and ŵ(τ) − α(δ)τ > 0), v̂1(0) − v̂1(y∗) =
−v̂1(y∗) ≥ 0. Result 3 also says that v̂1(x) can be written as

v̂1(x) = −α(δ)u(x) +
α(δ)

ŵ(x)− α(δ)x

∫ x

0

[ŵ(τ)− α(δ)τ ]u′(τ)

exp[
∫ x
τ

α(δ)
ŵ(ζ)−α(δ)ζdζ]

dτ . (13)

Then by (5), w(τ)−α(δ)τ ≤ vj(r
∗)−α(δ)y∗ (Proposition 2), and continuity

of ŵ(.), we see from (13) that v̂1(0)− v̂1(y∗) is minimized iff ŵ(τ)− α(δ)τ =
l∗j − α(δ)y∗, all τ . By (12) and ∆(τ) ≥ 0 (use (6)), v2(0) − v̂2(y

∗) =∫ y∗
0
K(τ ; y∗)∆(τ)dτ ≥ 0 is minimized iff ∆(τ) = 0, all τ . With these
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data, (11) and (12) imply that v̂(0) − v̂(y∗) is minimized iff v̂(x) − v̂(0) =
ϕ(x, y∗, l∗j , δ) and ŵ(x)− α(δ)x = l∗j − α(δ)y∗, all x.
We then move to adapt the above analysis for general v̂(.) and ŵ(.) with

ŵ(0) > 0. As Result 4, v̂(0) − v̂(y∗) is minimized iff v̂(.) and ŵ(.) take the
same forms as above. For this result, we first apply the Lebesgue Theorem
and Lebesgue decomposition (cf. Billingsley [4, Theorem 31.2, p.404; Eq.
31.31, p.414]) to v̂(.) and ŵ(.). Then we show that (9) holds if the singular
component of v̂(x) is added to its right side. Then we show that the modified
(9) has a unique solution in v̂(.). For the remaining analysis, a key is to
replace ŵ(τ) with the sum of its absolutely continuous component and ŵ(y∗)
at certain places so that integration can go through in a desirable way.
Result 4 helps us to establish Result 5: v̂(0) − v̂(y∗) > −ϕ(y∗, y∗, l∗j , δ)

if ŵ(0) = 0. We conclude that Result 4 holds without the restriction on
ŵ(0). Now by definition, l∗k ≥ v̂(0)− v̂(y∗) so l∗k ≥ ϕb(y

∗, l∗j , δ). To obtain the
greatest lower bound on l∗j (we already know l

∗
j > α(δ)y∗ by Gj(0; r, y∗) > 0),

let (2) be written as

ϕ(x, y, l, δ) = −α(δ)u(x) + α(δ)

∫ x

0

u′(τ)

exp[ α(δ)
l−α(δ)y (x− τ)]

dτ (14)

(as (11) can be written as (13)). Next fix v̂(0)− v̂(y∗) < α(δ)u(y∗). By (14),
ϕb(y, l, δ) is decreasing in l. Therefore the minimal l

∗
j satisfying v̂(0)−v̂(y∗) ≥

ϕb(y
∗, l∗j , δ) is obtained as v̂(0)− v̂(y∗) = ϕb(y

∗, l∗j , δ). Fix l
∗
j at this minimal

value so v̂(x) − v̂(0) = ϕ(x, y∗, l∗j , δ) and ŵ(x) − α(δ)x = l∗j − α(δ)y∗, all x.
By the linearity of ŵ(.) and effi ciency of (x, rx) in the game form following
c = 1 − x, ϕ(x, y∗, l∗j , δ) is concave in x. Result 6 says that ϕs(y, δ) and
ϕ(x, y, l, δ) have properties given in the proposition. This completes the
proof.

In the context of the above one-shot game, the proof of the last proposi-
tion characterizes the reward scheme that is effi cient according to the third
party’s criteria, i.e., minimizing his payoff capacities to reward and punish.
Notably, with such a scheme, as the seller’s consumption c varies from 1− y∗
to approaching 1, the seller’s surplus is positive and constant and his value
function for corresponding reports is affi ne, and the buyer’s surplus is posi-
tive and decreasing to zero and his value function is strictly concave; at c = 1
each agent gets zero surplus (so the seller’s surplus and value function are
not continuous but the buyer’s are).
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5 The folk (and non-folk) theorems

In this section, our main focus is how the refinements in the last section
would restrict on the equilibrium allocations when people are patient. The
benchmark is the following folk theorem with Definition 3 equilibrium.

Proposition 5 Let w̄ = 0.5ρ[u(q∗) + (1 − q∗)] (see (1)) and w = 0.5ρ.
Fix w ∈ (w, w̄]. Let q satisfy 0.5ρ[u(q) + (1 − q)] = w and δ satisfy w −
w = α(δ)q. Let the allocation f be such that for any (θti, φ

t
i, ω

t−1
i )i∈I and

k, fk,t((θ
t
i, φ

t
i, ω

t−1
i )i∈I , ωk,t) = q if ωk,t = 1. Then f is supported by an

equilibrium (Definition 3) if and only if δ ≥ δ.

Proof. The “only-if”part is obvious. (Suppose the converse. For an on-
path seller, if he transfers q, his payoff is (1− δ)(1− q) + δw. If he transfers
0, his payoff cannot be lower than (1 − δ) · 1 + δw.) For the “if”part, by
Proposition 1, it suffi ces to show that f can be supported by an equilibrium
in the perfect-monitoring benchmark. But this is standard.

5.1 CP equilibrium

In this part we show that the f in Proposition 5 can be supported by a CP
equilibrium if and only if δ ≥ δ. While the strengthened equilibrium does
not restrict the folk theorem (compared with Proposition 5), it does restrict
the equilibrium strategy profiles that support f .
To proceed, we introduce some objects used in constructing equilibria

in the rest of this section. In an equilibrium, consider a date-t meeting
in which the buyer’s and seller’s start-of-t continuation values are vb and vs,
respectively. Let ς = (vb, vs). When the seller is not endowed, let b(ς) and s(ς)
be the buyer’s and seller’s start-of-t+1 values (implied by the equilibrium),
respectively. When the seller is endowed, let y(ς), υb(ς), and ῡs(ς) be the
transfer of the good, the buyer’s start-of-t+1 value, and the seller’s start-of-
t+1 value, respectively. Also, when the seller is endowed but consumes 1 at
stage 1, let ῡb(ς) and υs(ς) be the buyer’s and seller’s start-of-t+1 values,
respectively. Let A(ς) = (y(ς), υb(ς), ῡs(ς), ῡb(ς), υs(ς)).
Now let σ be a CP equilibrium. Suppose that in a meeting when the

seller is endowed, by some way (discussed below) a report is identified with
some z ∈ [0, 1], the zero transfer is revealed by a report identified with 0,
and the buyer’s and seller’s continuation values implied by a report identified
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with z are expressed as ῡb(ς) + ιb(z, ς) and υs(ς) + ιs(z, ς), respectively. If
ιb(0, ς) = ιs(0, ς) = 0, then

Ub(y, z, ς) = (1−δ)u(y)+διb(z, ς), Us(y, z, ς) = −(1−δ)y+διs(z, ς), (15)

are the buyer’s and seller’s surplus from a transfer y and a report identified
with z, respectively. If in addition ιb(z, ς) and ιb(z, ς) are concave in z, then

(ý(c, ς), ź(c, ς)) ∈ arg max
(y,z)∈[0,1−c]×[0,1]

Ub(y, z, ς) s.t. Us(y, z, ς) ≥ Us(0, 0, ς)

(16)
is a pairwise effi cient outcome following c1,k,t = c. Suppose further that σ
supports the f in Proposition 5 and let one agent’s start-of-t continuation
value be v. Because his partner’s start-of-t value is w with probability one,

v/δ = 0.5ρ[α(δ)u(y(v, w)) + υb(v, w)] + 0.5(1− ρ)b(v, w) (17)

+0.5ρ[α(δ)(1− y(w, v)) + ῡs(w, v)] + 0.5(1− ρ)s(w, v).

Notice that if v = w then y(w,w) = q and υb(w,w) = ῡs(w,w) = b(w,w) =
s(w,w) = w, and, hence, the right side of (17) is equal to w. But can (17)
hold for any v 6= w?17 And, is the endowed seller willing to consume no more
than 1 − y(ς) at stage 1 if the outcome following his stage-1 consumption c
is determined by (16)? The next lemma shows that these are possible.

Lemma 1 Let (w, q, f, δ) be given by Proposition 5. Let δ ≥ δ, v = w −
α(δ)q, w < v̄ ≤ w + max{ρq(1 − δ)/(2 − δ), α(δ)u′(q)q}, and V = [v, v̄].
Then there exist A(.), b(.), and s(.) such that (17) holds for v ∈ V . For
ς = (vb, vs) ∈ V × V , given A(ς) there exist concave ιb(., ς) and ιs(., ς) with
ιb(0, ς) = ιs(0, ς) = 0 such that (ý(c, ς), ź(c, ς)) (defined by (15) and (16)) can
be set as (1 − c, 1 − c) for c ≥ 1 − y(ς) and as (y(ς), y(ς)) for c < 1 − y(ς),
and 1− y(ς) ∈ arg maxc∈[0,1] Us(ý(c, ς), ź(c, ς), ς).

Proof. Fix ς = (vb, vs). First we construct (y(ς), υb(ς), ῡs(ς)) in five
exclusive and exhaustive cases.
(a) (vb−w)(vs−w) 6= 0. Then (y(ς), υb(ς), ῡs(ς)) = (0, vb, vs). (This case

deals with a meeting between two agents with off-path continuation values.)
(b) (vb, vs) = (w, v) and v ≥ w. Then (υb(ς), ῡs(ς)) = (w, v) and

y(ς) = q − (v − w)(2− δ)
ρ(1− δ) .

17Proposition 2 requires that ῡs(w,w)− υs(w,w) ≥ α(δ)q and ῡb(w,w)− υb(w,w) > 0.
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(By the upper bound on v̄, y(ς) ≥ 0. This case shows the basic idea of how
to reward an agent with v > w (compared to an agent with w): when such
an agent makes a transfer less than q as a seller to an agent with w, his own
future value is still v.)
(c) (vb, vs) = (v, w) and v ≥ w. Then (y(ς), υb(ς), ῡs(ς)) = (q, w, w).
(d) (vb, vs) = (w, v) and v < w. Then (y(ς), υb(ς), ῡs(ς)) = (0, w, J(v)),

J(v) = v ·min{w
v
, 1 + α(δ)(1− w

v
)}. (18)

In (18), w is given by Proposition 5. (With ῡs(w, v) here and υb(v, w) in case
(e) equated to J(v), an agent with v returns to w in finite periods unless
v = v = w.)
(e) (vb, vs) = (v, w) and v < w. Then (υb(ς), ῡs(ς)) = (J(v), w) and

u(y(ς)) = u(q)− q − w

0.5ρ
+

v − δJ(v)

0.5ρ(1− δ) .

(By definitions of J(v), w, and w, 0.5ρu(y(ς)) = v+[v−J(v)]δ/(1−δ)−w ≥ 0
so y(ς) ≥ 0; by v ≤ J(v) ≤ w, u(y(ς)) < u(q) or y(ς) < q. This case shows
how to punish an agent with v < w: when such an agent receives a transfer
less than q as a buyer from an agent with w, his meeting partner’s future
value is still w.)
Next let (b(ς), s(ς)) = (υb(ς), ῡs(ς)). Then (17) holds for v ∈ V . (To

verify, substitute the above constructed terms for a generic v into the right
side of (17) and then subtract w from the left side and the above terms for
v = w from the right side.) Also, let ῡb(ς) = υb(ς) + (v̄ − w)y(ς)/q and
υs(ς) = ῡs(ς)− α(δ)y(ς).
Next let

ιb(z, ς) = −min{z, y(ς)} · (v̄ − w)/q, (19)

ιs(z, ς) = ῡs(ς)− υs(ς) + α(δ) ·min{z − y(ς), 0}. (20)

Then by y(ς) ≤ q and α(δ)u′(q)q ≥ v̄−w, (1− c, 1− c) and (y(ς), y(ς)) solve
the problem in (16) for c ≥ 1 − y(ς) and for c < 1 − y(ς), respectively. It
follows that Us(ý(c, ς), ź(c, ς), ς) = 0, all c. This completes the proof.

Now we can present the following folk theorem for CP equilibrium.

Proposition 6 Let (w, q, f, δ) be given by Proposition 5. Then f is sup-
ported by a CP equilibrium if and only if δ ≥ δ.
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Proof. The “only-if”part follows from Proposition 5. For the “if”part,
let V and (A(.), b(.), s(.), ιb(.), ιs(.)) be given by Lemma 1 and its proof. We
proceed by three steps. Step 1 defines a mapping hk,t (for any k and t)
which maps all agents’public history available at the start of t, i.e., βt−1 ≡
(θt−1i , φt−1i , rt−1i )i∈I , into an element in V (which turns out to be k’s start-of-t
continuation value). Step 2 describes the mechanism T and strategy profile
σ. Step 3 verifies that σ is a CP equilibrium.
Step 1. Let hk,1(β0) = w and then define hk,t for t ≥ 2 by induction. Fix

βt−1 and let j = φk,t. Given βt−1, let vk,t = gb(rk,t−1, hk,t−1(βt−2), hj,t−1(βt−2))
if θk,t = 0 and vk,t = gs(rk,t−1, hj,t−1(βt−2), hk,t−1(βt−2)) if θk,t = 1. For
ς = (vb, vs) we define g(r, ς) = (gb(r, ς), gs(r, ς)) as follows.
If r 6= 0 ≡ (0, 0, 0, 0) and r1br

1
s = 0, then g(r, ς) = (v, v). (This is to make

the autarky outcomes the worst outcome.)
If r = 0, then g(r, ς) = (υb(ς), ῡs(ς)). (This is to pin down the on-path

report when the seller is not endowed; recall that (b(ς), s(ς)) = (υb(ς), ῡs(ς)).)
If r1br

1
s = 1, then g(r, ς) = (ῡb(ς) + ιb(r

2
b , ς), υs(s) + ιs(r

2
b , ς)). (This is to

make (19)-(20) relevant value functions when the seller is endowed.)
Let Dt = {i ∈ I : vi,t < w} (this set turns out to be the set of reported

defectors at the start of t and it is defined because of k’s representative role).
Then let hk,t(βt−1) be determined as follows.
(i) #Dt ≤ 1, i.e., the number of elements in Dt is no greater than one

(there is at most one defector). Then hk,t(βt−1) = vk,t.
(ii) Dt = {i1, i2}, vi1,t−1 < w and vi2,t−1 = w (there are an old defector,

i1, and a new defector, i2). If k /∈ {i2, φi2,t−1}, then hk,t(βt−1) = w; otherwise
hk,t(βt−1) = vk,t.
(iii) Other Dt. Then hk,t(βt−1) = w.
Step 2. Fix γt ≡ (θti, φ

t
i, r

t−1
i )i∈I , k, and ωk,t. Given γt, let vi = hi,t(βt−1),

i ∈ {k, j = φk,t}. Let ς = (vk, vj) if θk,t = 0 and ς = (vj, vk) if θk,t = 1. In
the game form prescribed by Tk,t (following c1,k,t), k and j simultaneously
propose an outcome. If k and j propose the same feasible (y, r), then (y, r)
is the outcome; otherwise autarky is reached. Actions specified by σk,t are
as follows (we only describe σk,t because of k’s representative role).
Stage 1. If θk,t = 1, choose c1,k,t = min{ωk,t, 1− y(ς)}.
Stage 2. If ωk,t = 0, propose (0,0). If (ωk,t, c1,k,t) = (1, c), propose

(ý(c, ς), ŕ(c, ς))) with ŕ(c, ς) = (1, ź(c, ς), 1, ź(c, ς)), where (ý(c, ς), ź(c, ς)) is
given by Lemma 1. In autarky, announce (0, 1).
Step 3. Fix γt, k, and ωk,t. Let j, vi, and ς be the same as in step 2.

We claim (a) If all agents follow σ from t on, vj = w, and k’s start-of-t+1
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continuation value is determined by hk,t+1, then k’s start-of-t continuation
value is vk. For this claim, by its hypotheses and Lemma 1, k’s payoff from
meeting j is (1−δ)u(y(vk, w))+δυb(vk, w) if (θk,t, ωk,t) = (0, 1), is (1−δ)[1−
y(w, vk)] + δῡs(w, vk) if (θk,t, ωk,t) = (1, 1), is δb(vk, w) if (θk,t, ωk,t) = (0, 0),
and is δs(w, vk) if (θk,t, ωk,t) = (1, 0). Because (17) holds with (A(.), b(.), s(.)),
vk is k’s start-of-t value.
Given (a), we claim (b) If any i 6= k follows σi from t on and k follows σk

from t+1 on, then k does not gain by a single deviation from σk,t. This claim
is obvious for the move in autarky (notice that g(r, ς) = (v, v) if r 6= 0 and
r1br

1
s = 0), for any non-autarky move when ωk,t = 0 or (θk,t, ωk,t) = (0, 1),

and for the stage-2 proposal when (θk,t, ωk,t) = (1, 1) following c1,k,t. When
(θk,t, ωk,t, c1,k,t) = (1, 1, c), k’s surplus from the outcome specified by σk,t and
σj,t is Us(ý(c, ς), ź(c, ς), ς); hence by Lemma 1, k does not gain by choosing
c 6= 1− y(ς) at stage 1.
Given (a) and (b), σ is an equilibrium. To see that σ is a CP equilibrium,

suppose ý(c, ς) > 0 (treating ý(c, ς) = 0 as a special case). We observe that
z′ 7→ g((1, z, 1, z′), ς) is constant, z 7→ g((1, z, 1, z′), ς) is affi ne over [0, y(ς)]
and constant over [y(ς), 1], and g((1, y(ς), 1, z′), ς) = g(0, ς) > g(r, ς) =
(v, v) if r 6= 0 and r1br

1
s = 0. So (0,0) is pairwise effi cient following ωk,t = 0.

By Lemma 1, (ý(c, ς), ŕ(c, ς)) maximizes α(δ)u(y) + gb(r, ς)− gb((1, 0, 1, 0), ς)
subject to gs(r, ς)− α(δ)y ≥ gs((1, 0, 1, 0), ς) and 0 ≤ y ≤ 1− c, and, hence,
by the above observation, it is pairwise effi cient following (ωk,t, c1,k,t) = (1, c).
This completes the proof.

5.2 RP equilibrium: deterministic endowment

In this part we show that when ρ = 1 the f in Proposition 5 can be supported
by a RP equilibrium but the greatest lower bound on the discount factor δ
to support f is greater than δ. Compared with Proposition 6, necessity of a
higher lower bound on δ represents a loss due to renegotiation.
To see why a higher lower bound on δ is necessary, suppose that σ in

Proposition 4 supports f . Let k and j’s start-of-t continuation values be
w. Set (vk(r

∗), vj(r
∗), y∗) = (w,w, q). By the proposition, l∗j ≥ ϕs(q, δ) >

0.5α(δ)ν(q). But this cannot hold for δ close to δ because 0.5ν(q) > q and
l∗j ≤ w − w = α(δ)q. Hence δ should at least satisfy w − w = ϕs(q, δ) (it is
shown in the appendix that ϕs(y, δ) and ϕb(y, l, δ) are decreasing in δ). To
determine what the lower bound on δ is, we observe that if v̄ is the largest
continuation value admitted by σ, then for q to be transferred in the meeting
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in consideration, l∗k ≤ v̄ − w so v̄ ≥ w + ϕb(q, w − w, δ).
Is it possible for v̄ to reach this level for a given δ? To address this

issue, let k’s start-of-t value be v̄ while keep j’s as w. Let y ∈ [0, 1] be k’s
consumption and η be his start-of-t+1 value when he is the buyer; and let 1
be k’s consumption and v̄ be his start-of-t+1 value when he is the seller (this
is the maximum k can get as a seller). Hence v̄ = 0.5[(1 − δ)u(y) + δη] +
0.5[(1− δ) + δv̄], or v̄ = κ(y, η, δ), where

κ(y, η, δ) = ψ(y)− 0.5δ

1− 0.5δ
[ψ(y)− η], ψ(y) = 0.5[u(y) + 1].

By Proposition 4, for (y, η) to be realized in the meeting when k is the buyer,
there must be a pair of (lb, ls) in

Γ(δ) = {(y, η, lb, ls) : 0 ≤ y ≤ 1, w ≤ η ≤ ψ(y), (21)

κ(y, η, δ)− w ≥ ls ≥ ϕs(y, δ), κ(y, η, δ)− η ≥ lb ≥ ϕb(y, ls, δ)}

with ϕs(0, δ) = ϕb(0, l, δ) = 0. (As noted above, when both k and j have the
on-path continuation value w, in absolute value the maximal punishment to
the seller j is w−w and the maximal reward to the buyer k is κ(y, η, δ)−w.
Compared to these values, (21) says that there is more freedom to provide
incentives when k has an off-path continuation value.) Then, an upper bound
on v̄ is

v̄(δ) = maxκ(y, η, δ) s.t. (y, η, lb, ls) ∈ Γ(δ). (22)

Apparently, v̄(δ) is defined. The next lemma gives useful properties of v̄(δ).

Lemma 2 Let ρ = 1. Let (w, q, f, δ, w) and v̄(δ) be given by Proposition
5 and (22), respectively. (i) δ̂ = min{δ > δ : v̄(δ) − w ≥ ϕb(q, w − w, δ),
w − w ≥ ϕs(q, δ)} is defined; and (ii) If f is supported by a RP equilibrium
σ, then supV ≤ v̄(δ), where V is the set of continuation values admitted by
σ.

Proof. See the appendix.

By Lemma 2 and Proposition 4, if some σ supports f then δ ≥ δ̂. But
how to fulfill each v ≤ v̄(δ) in σ? Letting Ub(.) and Us(.) be given by (15)
and

(ý(c, ς), ź(c, ς)) ∈ arg max
(y,z)∈[0,1−c]×[0,1]

[Ub(y, z, ς)]
1/2[Us(y, z, ς)]

1/2, (23)

then we have the following result parallel to Lemma 1.
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Lemma 3 Let ρ = 1. Let (w, q, f, w) and δ̂ be given by Proposition 5 and
Lemma 2, respectively. Let δ ≥ δ̂, v = w, v̄ = v̄(δ), and V = [v, v̄]. Then
there exists A(.) such that (17) holds for v ∈ V . For ς = (vb, vs) ∈ V × V ,
given A(ς) there exist concave ιb(., ς) and ιs(., ς) with ιb(0, ς) = ιs(0, ς) = 0
such that (ý(c, ς), ź(c, ς)) (defined by (15) and (23)) can be set as (1− c, 1−
c) for c ≥ 1 − y(ς) and as (y(ς), y(ς)) for c < 1 − y(ς), and 1 − y(ς) ∈
arg maxc∈[0,1] Us(ý(c, ς), ź(c, ς), ς).

Proof. The construction for (y(ς), υb(ς), ῡs(ς)) is adapted from the proof
of Lemma 1. The construction of (ῡb(ς), υs(ς)) is built on Proposition 4;
that is, ῡb(ς)−υb(ς) = ϕb(y(ς), ϕs(y(ς), δ), δ) and ῡs(ς)−υs(ς) = ϕs(y(ς), δ),
leading to the obvious construction of ιb(., ς) and ιs(., ς). Details are in the
appendix.

Now we can present the following folk theorem for RP equilibrium.

Proposition 7 Let ρ = 1. Let (w, q, f) and δ̂ be given by Proposition 5 and
Lemma 2, respectively. Then f is supported by a RP equilibrium if and only
if δ ≥ δ̂.

Proof. The “only-if” part follows from Lemma 2 and Proposition 4.
For the “if”part, let V and (A(.), ιb(.), ιs(.)) be given by Lemma 3 and its
proof (here b(.) and s(.) are irrelevant). Now apply the three-step proof
of Proposition 6 with the following modifications. In step 1, let g(r, ς) =
(ῡb(ς)+ιb(r

2
b , ς), υs(ς)+ιs(r

2
b , ς)). (That is, the values of a report for the buyer

and seller depend only on the buyer’s message of the transfer.) In step 2, for
σk,t remove the part for ωk,t = 0; let (ý(c, ς), ź(c, ς)) in (ý(c, ς), ŕ(c, ς)) (when
(ωk,t, c1,k,t) = (1, c)) be given by Lemma 3; and let (0, 0) be announced in
autarky. In step 3, Lemma 3 assures that k does not gain by choosing c1,k,t 6=
1 − y(ς) when θk,t = 1; and σ is a RP equilibrium because (ý(c, ς), ŕ(c, ς))
maximizes [α(δ)u(y) + gb(r, ς)− gb(0, ς)]1/2[gs(r, ς)− gs(0, ς)−α(δ)y]1/2 over
(y, r) with 0 ≤ y ≤ 1 − c (0 = (0, 0, 0, 0)), and ιb(r2b , ς) and ιs(r

2
b , ς) are

concave in r2b .

5.3 RP equilibrium: stochastic endowment

In this part we establish two results for RP equilibrium when ρ < 1. First
we show that there is no folk theorem and there is a loss due to renegotiation
which does not vanish as δ approaches 1 (i.e., there is no approximate folk
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theorem). Then we show that when δ exceeds a lower bound, the welfare
loss due to renegotiation vanishes as ρ approaches 1, which provides some
continuity going from ρ < 1 to ρ = 1.
We begin with the first result.

Proposition 8 Let ρ < 1. (i) The f in Proposition 5 is not supported
by any RP equilibrium; and (ii) If σ is a RP equilibrium, then the average
continuation value at the start of date 1 is bounded above by some v̄ρ < w̄ρ,
where w̄ρ is the w̄ (a function of ρ) in Proposition 5.

Proof. For part (i), suppose the converse. But then by Proposition 3, the
distribution of the continuation values at the start of date 2 is non degenerate,
a contradiction. For part (ii), the average continuation value at the start of
date 1 cannot exceed the maximum value of the following problem which
includes the second inequality in Proposition 3 into the objective function
to constrain choices in meetings of odd dates (even dates are left out for
simplicity), namely,

max
(π,y1,y2)

1− δ
1− δ2

{λ(y1) + δ[πλ(y2) + (1− π)(λ(y2)− δ−1y1)]} (24)

subject to 0 ≤ π ≤ 1− 0.5(1− ρ), 0 ≤ y1, y2 ≤ 1, and λ(y) = 0.5ρ[u(y)− y].
(One may read the problem in (24) as follows. If an agent at an odd t is a
seller and not endowed, then he cannot be in the proportion π of meetings at
t+1. And, if one agent is in one of the proportion π of meetings at t+1, then
his expected period utility at t+1 before his type realization is (1− δ)λ(y2);
otherwise, his expected period utility is (1 − δ)(λ(y2) − δ−1y1), where y1 is
the meeting transfer at t when sellers are endowed. A new two-date cycle
restarts at t+ 2.) In this problem, it is optimal to choose π = 1− 0.5(1− ρ),
y1 = y with u′(y) = 1/ρ (y = 0 if u′(0) < 1/ρ and y = 1 if u′(1) > 1/ρ), and
y2 = q∗; hence the maximum value v̄ρ,δ = [λ(y)−0.5(1−ρ)y+δλ(q∗)]/(1+δ).
Apparently, limδ→1 v̄ρ,δ < w̄ρ.

Proposition 8 is a consequence of the above-noted property of Proposition
3 that resembles the incentive compatibility constraint in the centralized risk-
sharing models with private information. Among those models, our model is
more comparable to the one in Green [11] where a nearly effi cient allocation
can be implemented for patient agents (cf. Fudenberg, Levine, and Maskin
[10]). The proof of Proposition 8 illustrates why with decentralization near
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effi ciency cannot be a RP equilibrium in our model: the transfer is pairwise
so that λ(y) is bounded above by λ(q∗) = w̄ρ and, in particular, it cannot be
improved upon by using the resources from the proportion 1−π of meetings at
t+1. It is of great interest to further explore implications of the Proposition-
3 property and decentralization on the optimal allocation. For example, is
there an immiserization result as in [11]? Non-degenerate distributions of
the continuation values make the analysis much more diffi cult and beyond
the scope of this paper.18

Next we turn to the second result. Here we construct an equilibrium in
which the distribution of the continuation values has a support {vn}2n=−N+1
and the mass of agents with vn is πn. The basic idea is as follows. The
values v2 and v−N+1 provide incentives for people with v1 (as their start-of-t
continuation values) to transfer q∗ when they meet and sellers are endowed
and, as π1 turns out to be somewhat proportional to ρ, the welfare loss
vanishes as ρ approaches 1. Specifically, in a date-t meeting between two
agents with v1, if the seller is endowed, then the transfer is q∗ and each
agent’s start-of-t+1 value is v1; otherwise the buyer’s and seller’s start-of-
t+1 values are v2 and v−N+1, respectively.
If agent k’s value is v−N+1 at the start of t, then he consumes his own

endowment for N consecutive dates (including t). At the start of the nth
date of this N -date period, his value is v−N+n; at the start of date t+N , the
first date following the N -date period, k’s value returns to v1. In the N -date
period, if the start-of-τ value of j = φk,τ is v1 or v2, then j’s start-of-τ+1
value is v1.
What if k’s value is v2 at the start of t? When the start-of-t value of

j = φk,t is v2, or j’s value is v1 and k is a seller, k and j’s start-of-t+1 values
are always v1 (so there is no transfer). When j’s value is v1 and k is a buyer,
k and j are treated as if they both have v1.
The way that an agent’s value is updated implies the following inflow and

outflow of the mass for agents with vn at the end of t. If n = −N + 1, then
the inflow is 0.5π1(1−ρ)(π1+π2) (an agent with v1 contributes to the inflow
if he is a non-endowed seller and his meeting partner is with v1 or v2) and
outflow is π−N+1. If n = 2, then the inflow is 0.5(1− ρ)π1π1 (an agent with
v1 contributes to the inflow if he is a buyer and his meeting partner is with

18Such distributions also make monetary matching models hard to analyze; only with
special assumptions distributions can be explicitly solved (e.g., Green and Zhou [12]). To
determine the optimal allocation in our model, Proposition 4 may play a fundamental role.
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v1 and not endowed) and outflow is π2[1 − 0.5(1 − ρ)π1] (an agent with v2
does not contribute to the outflow if he is a buyer and his meeting partner is
with v1 and not endowed). If −N + 2 ≤ n ≤ 0, then the inflow is πn−1 and
outflow is πn.
Hence the vector {vn}2n=−N+1 satisfies
vn/δ = 0.5ρα(δ) + vn+1, −N + 1 ≤ n ≤ 0, (25)

v1/δ = (1− π1 − π2){0.5ρα(δ) + v1} (26)

+π1{0.5ρα(δ)[u(q∗) + 1− q∗] + ρv1 + 0.5(1− ρ)(v2 + v−N+1)}
+π2{0.5ρα(δ)(1− q∗) + ρv1 + 0.5(1− ρ)(v1 + v−N+1)},

v2/δ = (1− π1){0.5ρα(δ) + v1} (27)

+π1{0.5ρα(δ)[u(q∗) + 1] + ρv1 + 0.5(1− ρ)(v2 + v1)};
and the vector {πn}2n=−N+1 satisfies∑2

n=−N+1 πn = 1, (28)

0.5(1− ρ)π1(π1 + π2) = π−N+1, (29)

0.5(1− ρ)π1π1 = π2[1− 0.5(1− ρ)π1], (30)

πn = πn−1, −N + 2 ≤ n ≤ 0. (31)

To ensure conditions in Proposition 4, we also require
v1 − v−N+1

α(δ)
≥ ν(q∗), (32)

v2 − v1
α(δ)

≥ u(q∗)−
∫ q∗

0

u′(τ)

exp[ 1
(v1−v−N+1)/α(δ)−q∗ (q

∗ − τ)]
dτ . (33)

The next proposition confirms existence of such a RP equilibrium.

Proposition 9 If δ < 1 exceeds a lower bound, then for ρ suffi ciently close
to 1 there exists a RP equilibrium in which the average continuation value at
the start of date 1 is some v(ρ) such that limρ→1 v(ρ) = 0.5[u(q∗) + 1− q∗].
Proof. To begin with, fix a suffi ciently large N so that

N0.5[u(q∗)− q∗] > ν(q∗), (34)

0.5q∗ > u(q∗)−
∫ q∗

0

u′(τ)

exp[ 1
N0.5[u(q∗)−q∗]−q∗ (q

∗ − τ)]
dτ . (35)
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Next, by (29)-(31), πn = π2 for n ≤ 0. Then by (28), π2 = (1− π1)/(N + 1).
This and (30) imply that π1 is equal to

π1(ρ) =
−[1 + 0.5(1− ρ)] +

√
[1 + 0.5(1− ρ)]2 + 2(1− ρ)N

N(1− ρ)
.

Notice that 0 < π1(ρ) < 1. With π1 = π1(ρ), (29)-(31) determine a unique
vector {πn}. Given the vector {πn}, (25)-(27) determine a unique vector
{vn} (the right sides of (25)-(27) define a mapping of {vn} that satisfies the
Blackwell’s suffi cient conditions). Next, as is shown in the appendix, some
manipulation on (25)-(27) leads to expressions of (v1 − v−N+1)/α(δ) and
(v2 − v1)/α(δ) (in (42) and (43) below) which, viewed as functions of (ρ, δ),
are continuous in (ρ, δ) and as (ρ, δ)→ (1, 1) their limits are N0.5[u(q∗)−q∗]
and 0.5q∗, respectively. By continuity and (34) and (35), (32) and (33) hold
for ρ suffi ciently close to 1 if δ < 1 exceeds a lower bound.
Now fix (ρ, δ) in the suitable range. For the corresponding {(vn, πn)}, let

V = [v−N+1, v2] and we construct equilibrium σ by adapting the proof of the
“if”part of Proposition 7. Because (b(ς), s(ς)) = (ῡb(ς), υs(ς)) (see the proof
of Proposition 3), (ῡb(ς), υs(ς)) is part of (17) and need to be determined
simultaneously with (y(ς), υb(ς), ῡs(ς)),

19 and in particular A(ς) satisfies

v/δ =
2∑

n=−N+1
0.5πn{ρ[α(δ)u(y(v, vn)) + υb(v, vn)] + (1− ρ)ῡb(v, vn)

+ρ[α(δ)(1− y(vn, v)) + ῡs(vn, v)] + (1− ρ)υs(vn, v)}. (36)

As the distribution of continuation values is non degenerate, we also need
to modify hk,t. Details are in the appendix. To complete the proof, let v(ρ)
=
∑
πnvn. Because limρ→1 π1(ρ) = 1, limρ→1 v(ρ) = 0.5[u(q∗) + 1− q∗].

In the context of supporting the first best (i.e., each seller transfers q∗

when he is endowed) when agents are suffi ciently patient, Propositions 7,
8, and 9 together deliver the following point. While renegotiation alone
need not cause a problem, increasing the message space to accommodate
another dimension of pairwise public information (represented by the seller’s
endowment realization in the present model) may not be effective and the
degree of publicity of the other dimension (measured by ρ in the present

19This is not the case in the proofs of Propositions 6 and 7. In the first proof, we can
set (b(ς), s(ς)) = (υb(ς), ῡs(ς)). In the second proof, (b(ς), s(ς)) is irrelevant.
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model) may matter. This point is lost if, instead, each agent’s type at each
date is only pairwise public information– we lose Propositions 7 and 9 even
if the agent’s type is included in public messages.20

To complete this part, we note that for general ρ and δ if u′(0) is suffi -
ciently large then a constant positive transfer in some meetings can be as-
sured. This can be shown by constructing an equilibrium in which the distri-
bution of the continuation values has a two-point support {v, v̄} (v < v̄)with
equal mass.21 The basic idea is as follows. When two agents meet at t
and their start-of-t continuation values are in the support, there is a trans-
fer y ∈ (0, q∗] if and only if the buyer’s start-of-t value is v̄, the seller’s
is v, and the seller is endowed. For two such agents, each agent’s start-
of-t+1 value is the same as his own start-of-t value if there is no trans-
fer, and is the same as his meeting partner’s start-of-t value if y is the
transfer. So v/δ = 0.25ρα(δ) + (1 − 0.25ρ)v + 0.25ρ[α(δ)(1 − y) + v̄] and
v̄/δ = 0.5ρα(δ) + (1 − 0.25ρ)v̄ + 0.25ρ[α(δ)u(y) + v]. To formally present
such an equilibrium, the treatment is analogous to the one in the proof of
Proposition 9; we omit the details.

6 Message trading and monetary exchange

Here we relate message trading to monetary exchange by replacing reports
with money, a durable, divisible, and intrinsically useless object with a fixed
stock, in the basic model. Specifically, in each pairwise meeting stage 1 is
unchanged. At stage 2, a report r in a trading outcome is replaced with a
feasible transfer of money l (from the buyer to the seller if l ≥ 0), a report
in an autarky outcome is replaced with free disposal of money, and no input
into the reporting device in a non-terminal play is replaced with no transfer
of money.
Following the literature on monetary matching models, our interest is

in the model with pairwise observed money. That is, in a meeting each
agent’s money holdings and the transfer of money are pairwise public in-
formation, and the start-of-date-1 distribution of money is public informa-
tion. Here to prescribe the stage-2 game form, Tk,t depends on (θti, φ

t
i)i∈I

20Proposition 4 (static characterization for RP equilibrium) remains valid.
21In many monetary matching models, agents are assumed to hold either 1 or 0 units

of money, which makes the distribution of money holdings tractable. Regardless of the
apparent similarity, the two-point support here is not due to any assumption that resembles
the exogenous physical constraint on money holdings.
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and (mk,t,mj,t, ωk,t, c1,k,t) (j = φk,t), where mi,t is agent i’money holdings at
the start of his date-t meeting; and the strategy σk,t conditions on (θti, φ

t
i)i∈I ,

(mk,t,mj,t, ωk,t), and actions already taken by k and j during the meeting.
The equilibrium concepts are then adapted from Definitions 3, 5, and 6;
here at any information set k has the belief that the measure of agents with
off-path holdings is zero. Following the literature, we restrict attention to
equilibria in which money is never disposed.

Proposition 10 If f is supported by an equilibrium in the model with pair-
wise observed money, then it is supported by an equilibrium in the basic model.

Proof. For convenience of exposition, we first introduce the model with
publicly observed money: Each agent’s money holdings and the transfer of
money in the meeting are public information; Tk,t depends on (θti, φ

t
i,m

t
i)i∈I

and (ωk,t, c1,k,t), wheremt
i = (i,mi,1, ...mi,t); and σk,t conditions on (θti, φ

t
i,m

t
i)i∈I ,

ωk,t, and actions already taken by k and φk,t during the meeting.
Now it suffi ces to establish (a) If f is supported by an equilibrium σ for

some T in the model with publicly observed money, then f is supported by
an equilibrium σ′ for some T ′ in the basic model; and (b) If f is supported by
an equilibrium σ for some T in the model with pairwise observed money, then
f is supported by an equilibrium σ′ for some T ′ in the model with publicly
observed money.
For (a), suppose the hypothesis holds. Let λ : R → (0, 1) be a strictly

increasing function. Let ϑ : [0, 1] → R be defined by ϑ(x) = λ−1(x) if x ∈
(0, 1) and ϑ(1) = ϑ(0) = 0. To describe T ′ and σ′, fix γt ≡ (θti, φ

t
i, r

t−1
i )i∈I ,

k, and ωk,t. Given γt, let mi,τ+1 = mi,τ + (2θi,τ − 1)r1i,s,τϑ(r2i,b,τ ) if 1 ≤ τ < t,
where mi,1 is i’s initial money holdings in the model with publicly observed
money; let γmt = (θti, φ

t
i,m

t
i)i∈I . In the game form prescribed by T

′
k,t (following

c1,k,t), k and j = φk,t simultaneously propose an outcome. If k and j propose
the same feasible (y, r), then (y, r) is the outcome; otherwise, autarky is
reached. Actions specified by σ′k,t are as follows. At stage 1 take the same
action as specified by σk,t given (γmt , ωk,t). Following c1,k,t, at stage 2 propose
(ȳ, r̄) with r̄ = (ωk,t, λ(l̄), ωk,t, λ(l̄)), where (ȳ, l̄) is the outcome specified by
σk,t and σj,t in the game form prescribed by Tk,t given (γmt , ωk,t, c1,k,t). In
autarky announce (0, 0).
To see that σ′ is an equilibrium, it suffi ces to show that given (γt, ωk,t, c1,k,t),

by taking the value of the l transfer of money in σ given γmt as the value of r
with r1sϑ(r2b ) = l, k does not gain by proposing a different outcome at stage
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2 if all other agents do not deviate from t on and there is no further devia-
tion of k. But if k can gain, he can gain by deviating to autarky in σ given
(γmt , ωk,t, c1,k,t). As σ

′ is an equilibrium, given (θti, φ
t
i, ω

t
i)i∈I , on-path plays of

σ′ and σ generate the same transfers of goods (notice that if on-path plays
of σ generate (mt+1

i )i∈I , then on-path plays of σ′ generate (rti)i∈I such that
mi,τ+1 = mi,τ + (2θi,τ − 1)r1i,s,τϑ(r2i,b,τ ), 1 ≤ τ ≤ t).
For (b), suppose the hypothesis holds. Let i’s initial holdings in both

models be the same mi,1. To describe T ′ and σ′, fix γmt ≡ (θti, φ
t
i,m

t
i)i∈I ,

k, and ωk,t. In the game form prescribed by T ′k,t (following c1,k,t), k and
j = φk,t simultaneously propose an outcome. If k and j propose the same
feasible (y, l), then (y, l) is the outcome; otherwise, autarky is reached. Ac-
tions specified by σ′k,t are as follows. At stage 1 take the same action as
specified by σk,t given {(θti, φti)i∈I ,mk,t,mj,t, ωk,t}. Following c1,k,t, at stage
2 propose (ȳ, l̄) if #{i ∈ I : mi,t 6= m̂i,t} ≤ 2(t − 1), where (ȳ, l̄) is the
outcome specified by σk,t and σj,t in the game form prescribed by Tk,t given
{(θti, φti)i∈I ,mk,t,mj,t, ωk,t, c1,k,t}, and m̂i,t is some holdings of i at the start of
t generated by on-path plays of σ given (θti, φ

t
i); propose (0, 0) otherwise. In

autarky keep mk,t. The remaining argument is analogous to the counterpart
for (a).

The logic behind Proposition 10 is simple. Reports support a larger
message space than money. So some component of the information content
z′ on an information set provided by reports to which a strategy profile σ′

responds in the basic model can be identified as the information content z
provided by money to which a strategy profile σ responds in the model with
pairwise observed money (and any z can be identified as a component of some
z′). When we let the response of σ′ to z′ be the response of an equilibrium σ
to z, we obtain an equilibrium σ′. This logic does not rely on σ being only
an equilibrium, but not a CP or RP equilibrium, so the proposition holds if
we replace equilibrium with CP or RP equilibrium.
Now we provide two remarks on three related results, Proposition 10, the

“only-if”part of Proposition 1, and the money-is-memory result in Kocher-
lakota [20]. First, if we state “Money is memory” as “Money is essential
only if memory, the information about one’s past actions that is accessible to
his direct and indirect matching partners, is absent,”then the “only-if”part
of Proposition 1 and Proposition 10, respectively, can be stated as “Public
messages are essential only if perfect monitoring (or, equivalently, the infor-
mation about one’s past actions that is accessible to the public) is absent”
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and “Money is essential only if public messages are absent.”
Second, while our results imply “Money is essential only if perfect moni-

toring is absent,”there is a counterexample to this conclusion in [20]. While
the class of models in [20] is more general than the model here, the basic logic
for Propositions 1 and 10 suggests that our conclusion fails in the example
of [20] because there an agent’s knowledge of the physical environment (the
matching history in specific) is different under money than under perfect
monitoring. Our conclusion seems to hold if such asymmetry in knowledge
is eliminated.
Given Proposition 10, it is natural to ask whether reports can support

more allocations than money. The next result serves the illustrative purpose.

Proposition 11 Let (w, q, f) be given by Proposition 5. If ρ < 1, then f is
not supported by any equilibrium in the model with pairwise observed money.

Proof. See the appendix.

7 Concluding remarks

In our study we let the creation of messages be part of the risk-sharing stage
game. When the stage game precedes the creation of messages, we can adapt
our non-sequential model to a sequential model as follows. The transfer and
consumption of the endowed good occur at stage 1; messages are input into
the reporting device at stage 2; and at stage 2 there is another valuable object
(which does not exist in our non-sequential model), say transferable utility,
available for message trading. In the sequential model, the counterpart of
Proposition 6 for CP equilibrium should hold, because in a meeting each
agent at stage 2 can condition his action on the stage-1 transfer. But with
renegotiation the set of stage-2 trades does not depend on the stage-1 trans-
fer and, hence, the stage-1 transfer must be zero in equilibrium. To depart
from this extreme result in the sequential model, the set of stage-2 trades
should depend on the stage-1 transfer and, with such dependence, counter-
parts of propositions in subsections 5.2-5.3 should hold if messages are still
essential. To obtain such dependence, one may consider employing hard ev-
idence (which does not exist in our non-sequential model). Specifically, if a
seller makes a transfer at stage 1, then he processes hard evidence that can
confirm the stage-1 transfer. But how can messages be essential when hard
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evidence is available? A plausible answer is that examining evidence is costly.
This seems interesting enough to be pursued in a separate study.
Two sorts of goods-message trading models, sequential and non-sequential,

may be integrated to study non-cash payment methods such as checks and
credit cards. While checks and cards may reveal the transfer of goods to out-
siders as does currency, they do differ from currency. Specifically, for checks
and cards to be used, peoples’payment histories ought to be accessible to
outsiders for some finite cost. Otherwise, in the case of checks, the buyer
can default on the payment by, say, depleting his checking account before
the check is cleared. But if the buyer’s default cannot be known to out-
siders, the seller will not accept the buyer’s check in the first place. Hence,
for checks and cards there are two tiers of information revelation: a primary
tier pertaining to transfers of goods and a secondary tier pertaining to pay-
ment histories. (For currency the secondary tier is irrelevant.) Notably, the
secondary-tier information revelation may also be subject to message trad-
ing. For instance, in the case of checks, after the buyer pays for the seller’s
good with a check (the primary-tier information revelation), the buyer takes
actions that affect the check clearing; then the buyer and the seller (or a third
party) take actions that affect messages about the check clearing.22 Hence,
the two-tier revelation would naturally be represented by some integration
of the sequential and non-sequential models.
Finally, our study suggests some features for models of coexisting pay-

ment methods and the evolution of their coexistence. Specifically, non-cash
payment methods do not eliminate the informational friction that gives cur-
rency a role; non-cash payments would be substituted for cash payments
when the substitution is socially beneficial; and the benefits would in part be
driven by technological and institutional innovation that reduces the costs
of sharing non-cash payment histories. In such a model, coexisting payment
methods evolve to a cashless limit as goods are not paid by currency at
all; the model with publicly observed money in the last section is such a
limit.23 While different cashless limits would be obtained in models with the
suggested features, they are all conceptually different from models in which

22For example, the buyer pays some currency to the seller for not reporting a default.
23In that model each payment is public information so money cannot be interpreted as

currency in the usual sense (while it may in the model with pairwise observed money).
Public payment history seems to be a natural consequence of the ideal banking system
described by Wicksell [37].
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transaction frictions that are overcome by currency disappear.24

Appendix

The proof of Proposition 1

For the “only-if” part, let f be supported by an equilibrium σ for some
T in the basic model. To describe σ′ in the benchmark, first fix µt ≡
(θti, φ

t
i, ω

t−1
i )i∈I and (qt−1i )i∈I . Given µt, let (rt−1i )i∈I be the on-path report

history in the basic model generated by σ; let γt = (θti, φ
t
i, r

t−1
i )i∈I . Given µt

and (qt−1i )i∈I , for τ ∈ {1, ...,max{1, t − 1}} define by induction zi,τ ∈ {0, 1}
so that Z0τ = {i ∈ I : zi,τ = 0} has at most 1 element; we set zi,0 = 1, all i,
and let #Z00 = 0. When #Z0τ−1 = 1, let (r̂τ−1i )i∈I be a report history in the
basic model in which the only deviation from σ up to the start of τ , under
µτ , is made by the agent in Z

0
τ−1 at τ − 1. Given γ̂τ ≡ (θτi , φ

τ
i , r̂

τ−1
i )i∈I and

ωk,τ , let ŷk,τ be the transfer specified by σk,τ and σj,τ (j = φk,τ ). Then set
dk,τ = 0 iff either zk,τ−1 · zj,τ−1 · θk,τ = 1 and qk,τ < ŷk,τ , or k ∈ Z0τ−1. When
#Z0τ−1 = 0, set dk,τ = 0 iff θk,τ = 1 and qk,τ < yk,τ ≡ fk,τ (µτ , ωk,τ ). Letting
Dτ = {k ∈ I : dk,τ = 0}, if #Dτ ≤ 1, then zi,τ = di,τ ; if Dτ = {k1, k2} with
zk1,τ−1 = 0 and zk2,τ−1 = 1, then zi,τ = 0 iff i = k2; for all other Dτ , zi,τ = 1.
Next fix (k, ωk,t). Actions specified by σ′k,t when θk,t = 1 are as follows.
At stage 1 choose c1,k,t = 0. At stage 2, if #Z0t−1 = 0 and 1 − c1,k,t ≤ yk,t,
transfer yk,t; if#Z0t−1 ·zk,t−1 ·zj,t−1 = 1 and 1−c1,k,t ≤ ŷk,t, transfer ŷk,t; other-
wise, transfer 0. To see that σ′ is an equilibrium, the case worth of checking
is that given (µt, ωk,t, c1,k,t) and (qt−1i )i∈I with zk,τ−1 · zj,τ−1 · θk,τ = 1 and
yk,t ≥ 1− c1,k,t > 0 if #Z0t−1 = 0, or ŷk,t ≥ 1− c1,k,t > 0 if #Z0t−1 = 1, k does
not gain by deviating at stage 2 if all other agents do not deviate from t on
and there is no further deviation of k. Transferring yk,t when #Z0t−1 = 0 (ŷk,t
when #Z0t−1 = 1, respectively) in σ′ gives k the same payoff as transferring
yk,t given (γt, ωk,t) (ŷk,t given (γ̂t, ωk,t), respectively) in σ. His payoffs from
a smaller transfer y in σ′ and in σ, respectively, are (1− δ) · (1− y) + δ · 0.5ρ
and (1− δ) · (1− y) + δ · v for some v ≥ 0.5ρ. Because σ is an equilibrium,
k does not gain by deviating from σ′k,t.

24For example, the cashless limits in Calvacanti and Wallace [5] and Kocherlakota and
Wallace [22] are matching models with perfect monitoring. Also see Woodford [38] in
footnote 7.
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The completion of the proof of Proposition 4

Here we prove the six intermediate results in the main text.
Result 1. In (x, rx), x = 1− c; there exists a report r̆x such that (0, r̆x)

is Pareto dominated by (x, rx), and each of k and j can obtain (0, r̆x) given
the other does not deviate.
Let vi = vi(rx) and v∗i = vi(r

∗). We first show x = 1− c. By Proposition
2, ∆j = v∗j − vj > 0 and ∆k = vk − v∗k > 0. By effi ciency of (y∗, r∗) in
the game form following the on-path c1,k,t, (y∗, 0) ∈ arg max[α(δ)u(q) + z∆k]
for (q, z) ∈ [0, y∗] × [0, 1] and z∆j = α(δ)(y∗ − q). If x < 1 − c, then by
effi ciency of (x, rx) following c1,k,t = c, (x, 0) ∈ arg max[α(δ)u(q) − z∆k] for
(q, z) ∈ [x, 1−c]×[0, 1] and z∆j = α(δ)(q−x). Hence for z in a neighborhood
of 0, 0 ∈ arg maxz α(δ)u[y∗ − z∆j/α(δ)] + z∆k so u′(y∗)∆j ≥ ∆k, and also
0 ∈ arg maxz α(δ)u[x+z∆j/α(δ)]−z∆k so∆k ≥ u′(x)∆j. But u′(y∗) ≥ u′(x)
contradicts to y∗ > x and u′′ < 0. So x = 1− c.
Next let r̃x = (r̃x,b, r̃x,s) be the report specified by σk,t and σj,t following

the history that k adheres to σk,t but j makes some play(s) leading to autarky;
and let r̂x = (r̂x,b, r̂x,s) be the report specified by σk,t and σj,t following the
history that j adheres to σj,t but k makes some play(s) leading to autarky.
Without loss of generality assume vj(r̃x) ≤ vj(r̂x). Let r̆x = (r̃x,b, r̂x,s) so
each of k and j can obtain (0, r̆x) given the other does not deviate. Let
ṽi = vi(r̃x), v̂i = vi(r̂x), v̆i = vi(r̆x), lk = v̆k−vk, and lj = vj− v̆j. For σ to be
an equilibrium, vj− ṽj ≥ α(δ)x, v̂k−vk ≤ α(δ)u(x), v̆j ≤ ṽj, and v̆k ≤ v̂k (see
the similar argument in the proof of Proposition 4). By effi ciency of (x, rx),
(x, 0) ∈ arg max[α(δ)u(q)+zlk] for (q, z) ∈ [0, x]×[0, 1] and zlj = α(δ)(x−q).
Hence for z in a neighborhood of 0, 0 ∈ arg maxz α(δ)u[x− zlj/α(δ)] + zlk so
u′(x)lj ≥ lk. By u′′ < 0, this rules out (α(δ)u(x), α(δ)x) = (lk, lj). So (0, r̆x)
is Pareto dominated by (x, rx).

Result 2. −v(.) and w(.) are nondecreasing and continuous on (0, y∗];
v(0) − v(y∗) < α(δ)u(y∗) and w(y∗) − w(0) ≥ α(δ)y∗ with (v(0), w(0)) =
limx↓0(v(x), w(x)).
Fix 0 < x ≤ y∗, let y be suffi ciently close to x, and refer to as Games X

and Y for the game forms following c = 1 − x and c = 1 − y, respectively.
Let Vp = α(δ)u(p) + v(p) and Wp = w(p)− α(δ)p for p ∈ {x, y}.
First consider monotonicity and let y < x. Because (x, rx) and (y, ry) are

effi cient in relevant games, we rule out (i) [v(y) − v(x)][w(y) − w(x)] > 0,
and (ii) [v(y)− v(x)][w(y)−w(x)] = 0 and (v(y), w(y)) 6= (v(x), w(x)). Now
suppose by contradiction that either −v(.) or w(.) is strictly decreasing and
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so it must be (M0) v(y) < v(x) and w(y) > w(x).
In Game X, let r̃ = (r̃b, r̃s) be the report specified by σk,t and σj,t following

the history that k adheres to σk,t but j makes some play(s) leading to autarky.
In Game Y, let r̂ = (r̂b, r̂s) be the report specified by σk,t and σj,t following
the history that j adheres to σj,t but k makes some play(s) leading to autarky.
Let r̆ = (r̃b, r̂s). For j not to deviate in game X, Wx ≥ v̆j, implying (0, r̆)
not effi cient in game X. For, otherwise, Vx ≤ v̆k, which together with (M0)
and y < x implies Vy < v̆k, i.e., k has a beneficial deviation in game Y.
By the same argument (for k not to deviate and (0, r̆) to be effi cient in
game Y, j has a beneficial in game X), (0, r̆) is not effi cient in game Y. For
p ∈ {x, y} denote by (p′, r′p) the Nash solution with the disagreement point
(0, r̆) in Game P∈ {Y,X}. Let V ′p = α(δ)u(p′) + vk(r

′
p), W

′
p = vj(r

′
p)−α(δ)p′,

v̆i = vi(v̆), V̆p = Vp − v̆k, W̆p = Wp − v̆j, V̆ ′p = V ′p − v̆k, and W̆ ′
p = W ′

p − v̆j.
By definition, V̆ ′x, W̆

′
x, V̆

′
y , W̆

′
y > 0.

Now we have (M1) V̆y ≥ V̆ ′y and W̆x ≥ W̆ ′
x (renegotiation does not make

k/j better off in Game Y/X); (M2) V̆pW̆p ≤ V̆ ′pW̆
′
p for each p ((p

′, r′p) is the
Nash solution); and (M3) u′(p′)W̆ ′

p ≥ V̆ ′p and equal if p
′ < p for each p (the

first order condition on p′). By (M1) and (M2), W̆y ≤ W̆ ′
y and V̆x ≤ V̆ ′x.

By (M0), V̆x > V̆y and W̆x < W̆y. Putting these four inequalities and (M1)
together, we have (M4) V̆ ′x ≥ V̆x > V̆y ≥ V̆ ′y and W̆

′
x ≤ W̆x < W̆y ≤ W̆ ′

y. By
(M4), V̆ ′x/W̆

′
x > V̆ ′y/W̆

′
y. This and (M3) imply either y

′ = y or x′ < y′ < y.
But if x′ < y′ then (y′, r′y) cannot be the Nash solution in Game Y. So y

′ = y
and then x′ ≤ x, (M4), and (M0) imply vk(r′y) ≤ v(y) < v(x) ≤ vk(r

′
x)

and vj(r′y) ≥ w(y) > w(x) ≥ vj(r
′
x). Hence ∆k = vk(r

′
x) − vk(r′y) > 0 and

∆j = vj(r
′
y)− vj(r′x) > 0. But then 0 ∈ arg maxz(V̆

′
x − z∆k)(W̆

′
x + z∆j) and

0 ∈ arg maxz(V̆
′
y + z∆k)(W̆

′
y − z∆j) imply V̆ ′x/W̆

′
x ≤ ∆k/∆j and V̆ ′y/W̆

′
y ≥

∆k/∆j, a contradiction.
Next for continuity suppose by contradiction that either v(.) or w(.) is

not continuous at x. By Gj(0; ry, x)[v(y)− v(x)] ≤ Gk(0; ry, x)[w(x)−w(y)]
(see (3)) and monotonicity, v(x) < limy↑x v(y) ⇒ w(x) > limy↑xw(y) and
w(x) < limy↓xw(y) ⇒ v(x) > limy↓x v(y). Using Gj(0; rx, y)[v(x) − v(y)] ≤
Gk(0; rx, y)[w(y) − w(x)], we have the opposite implications. Without loss
of generality we assume (C0) v(x) < limy↑x v(y) and w(x) > limy↑xw(y)
(v(x) > limy↓x v(y) and w(x) < limy↓xw(y) can be dealt with analogously).
In Game X, let r̄ = (r̄b, r̄s) be the report specified by σk,t and σj,t following

the history that j adheres to σj,t but k makes some play(s) to leading to
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autarky. In Game Y with y < x, let ř = (řb, řs) be the report specified by
σk,t and σj,t following the history that k adheres to σk,t but j makes some
play(s) to leading to autarky. Let r̆ = (r̄b, řs). While this r̆ need not be
the same as the r̆ in the above proof for monotonicity, let (p′, r′p), V

′
p , W

′
p,

v̆i, V̆p, W̆p, V̆ ′p , and W̆ ′
p be defined as in the above. Adapting the above

argument, we can show that (0, r̆) is not effi cient in either game (here we use
Wx ≤ v̆j ⇒ Wy < v̆j and Vy ≤ v̆k ⇒ Vx < v̆k as y is close to x). Then again,
V̆ ′x, W̆

′
x, V̆

′
y , W̆

′
y > 0.

Now we have (C1) V̆x ≥ V̆ ′x and W̆y ≥ W̆ ′
y, and have (C2) and (C3)

the same as (M2) and (M3), respectively, in the proof for monotonicity. By
(C1) and (C2), V̆y ≤ V̆ ′y and W̆x ≤ W̆ ′

x. By (C0) and y being close to x,
V̆x < V̆y and W̆x > W̆y. Putting these four inequalities and (C1) together,
we have (C4) V̆ ′x ≤ V̆x < V̆y ≤ V̆ ′y and W̆

′
x ≥ W̆x > W̆y ≥ W̆ ′

y. By (C4),
V̆ ′x/W̆

′
x > V̆ ′y/W̆

′
y. We claim v(x) ≥ vk(r

′
x). (This is the place where the

proof for continuity differs from the proof for monotonicity.) Then effi ciency
of (x′, r′x) implies w(x) ≤ vj(r

′
x). So by (C0) and (C4), vk(r

′
y) ≥ v(y) >

v(x) ≥ vk(r
′
x) and vj(r

′
y) ≤ w(y) < w(x) ≤ vj(r

′
x) (V̆y ≤ V̆ ′y ⇒ vk(r

′
y) ≥ v(y)

and W̆y ≥ W̆ ′
y ⇒ vj(r

′
y) ≤ w(y)). Hence dk = vk(r

′
y) − vk(r

′
x) > 0 and

dj = vj(r
′
x) − vj(r

′
y) > 0. But then 0 ∈ arg maxz(V̆

′
x − zdk)(W̆

′
x + dj) and

0 ∈ arg maxz(V̆
′
y +zdk)(W̆

′
y−zdj) imply V̆ ′x/W̆ ′

x ≤ dk/dj and V̆ ′y/W̆
′
y ≥ dk/dj,

a contradiction.
For the claim, suppose the converse that lk = vk(r

′
x) − v(x) > 0. Then

effi ciency of (x, rx) implies lj = w(x) − vj(r
′
x) > 0. Also by lk > 0, (C1)

implies x′ < x so (C3) implies u′(x′) = V̆ ′x/W̆
′
x. With V̆

′
x/W̆

′
x ≤ lk/lj following

from 0 ∈ arg maxz(V̆
′
x−zlk)(W̆ ′

x+zlj), u′(x′) ≤ lk/lj. But effi ciency of (x, rx)
implies (x, 0) ∈ arg max[α(δ)u(q) + zlk] for (q, z) ∈ [0, x] × [0, 1] and zlj =
α(δ)(x − q) so 0 ∈ arg maxz α(δ)u[x − zlj/α(δ)] + zlk or u′(x) ≥ lk/lj, a
contradiction (above we have x′ < x and u′(x′) ≤ lk/lj).
With continuity, w(y∗)− w(0) ≥ α(δ)y∗ follows from Proposition 2.
Finally we turn to v(0) − v(y∗) < α(δ)u(y∗). Let r̊ = (̊rb, r̊s) be the

report specified by σk,t and σj,t in the game form following c1,k,t = 1. For j
not to deviate in this game form, vj (̊r) ≥ vj(r) with r = (̊rb, rs) for any rs ∈
{0, 1}× [0, 1] and, if vk (̊r) ≥ vk(r) and [vk (̊r)−vk(r)]+[vj (̊r)−vj(r)] > 0 then
any (0, r′) that maximizes the Nash product with (0, r) as the disagreement
point and 0 units of goods remaining satisfies vj (̊r) ≥ vj(r

′) (j does not gain
by renegotiation) and vk(r′) ≥ vk (̊r) (the renegotiated outcome is effi cient).
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We note that the above proof for monotonicity does not rely on y > 0. (The
only use of y > 0 there is to make (M3) sensible, and the only use of (M3) is
to obtain y′ = y, which is trivial in case y = 0.) So vk (̊r) ≥ v(0).
Now without loss of generality, suppose that the on-path c1,k,t is equal to

1− y∗ and consider the game form following the on-path c1,k,t. In this game
form, let rs be the announcement specified by σj,t following the history that
j adheres to σj,t but k makes some play(s) leading to autarky; let r = (̊rb, rs).
We have vk(r) ≤ α(δ)u(y∗) + v(y∗) (k does not to deviate to autarky and
announce r̊b.) If vk (̊r) < vk(r) then v(0) < α(δ)u(y∗) + v(y∗) (recall that
vk (̊r) ≥ v(0)). So suppose vk (̊r) ≥ vk(r). Notice that vj(r) ≤ vj (̊r) (the
definition of r̊) and vj (̊r) ≤ −α(δ)y∗ + w(y∗) (Proposition 2).
We proceed by assuming that (0, r) is not effi cient in the game form

(treating vk(r) = α(δ)u(y∗) + v(y∗) and vj(r) = −α(δ)y∗+w(y∗) as a special
case). Let (y, r′′) maximize the Nash product with (0, r) as the disagree-
ment point and y∗ units of goods remaining; notice that α(δ)u(y∗) + v(y∗) ≥
α(δ)u(y) + vk(r

′′) (k does not gain by renegotiation) and −α(δ)y∗+w(y∗) ≤
−α(δ)y + vj(r

′′) ((y, r′′) is effi cient). If vj (̊r) = vj(r) and vk (̊r) = vk(r),
then by α(δ)u(y) + vk(r

′′) > vk(r) ((y, r′′) maximizes the Nash product),
v(0) < α(δ)u(y∗) + v(y∗) (recall that vk (̊r) ≥ v(0)). So suppose (0, r) is
Pareto dominated by (0, r̊) (as noted above vj (̊r) ≥ vj(r)) and let (0, r′)
maximize the Nash product with (0, r) as the disagreement point and 0 units
of goods remaining. We claim that α(δ)u(y) > vk(r

′) − vk(r′′) ≡ dk. Then
v(0) < α(δ)u(y∗) + v(y∗) (recall that vk(r′) ≥ vk (̊r) ≥ v(0)).
To see the claim, suppose the converse so dj ≡ vj(r

′′) − vj(r′) ≥ α(δ)y
((y, r′′) is effi cient). If dj > 0, then by definitions of (y, r′′) and (0, r′),
0 ∈ arg maxz[α(δ)u(y) + vk(r

′′) + zdk − vk(r)][−α(δ)y + vj(r
′′)− zdj − vj(r)]

and 0 ∈ arg maxz[vk(r
′)− zdk − vk(r)][vj(r′) + zdj − vj(r)]. It follows that

α(δ)u(y) + vk(r
′′)− vk(r)

−α(δ)y + vj(r′′)− vj(r)
≥ dk
dj
≥ vk(r

′)− vk(r)
vj(r′)− vj(r)

.

So α(δ)u(y) = dk and α(δ)y = dj. By y > 0 and effi ciency of (y, r′′),
0 ∈ arg maxz α(δ)u[y − zdj/α(δ)] + zdk so u′(y) ≥ dk/dj, contradicting to
u′′ < 0 and u(y)/y = dk/dj. The same contradition follows if dk > 0. If dk =
dj = 0, then y = 0. By vj(r′) ≤ vj (̊r) ≤ −α(δ)y∗+w(y∗) ≤ −α(δ)y+ vj(r

′′),
∆j ≡ w(y∗)−vj(r′′) = α(δ)y∗. It follows that∆k ≡ vk(r

′′)−v(r∗) = α(δ)u(y∗)
(recall that (y, r′′) is effi cient and ∆k ≤ α(δ)u(y∗)). By effi ciency of (y∗, r∗),
0 ∈ arg maxz α(δ)u[y∗ − z∆j/α(δ)] + z∆k so u′(y∗) ≥ ∆k/∆j, contradicting
to u′′ < 0 and u(y∗)/y∗ = ∆k/∆j. This completes the proof.
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Result 3. (10)⇒ (11) and (12), and (11)⇔(13).
By dK(τ ;x)/dτ = −h(τ)K(τ ;x) and integration by parts, (10) yields

v̂n(x) = mn(x)−
∫ x

0

mn(τ)dK(τ ;x) (37)

= mn(x)−mn(τ)K(τ ;x)|x
0

+

∫ x

0

K(τ ;x)m′n(τ)dτ .

From (37) (the second equality and mn(x) = mn(τ)K(τ ;x)|x
0
), we obtain

(11) and (12). From (37) and applying the same argument used in (37), we
have v̂1(x) = −α(δ)u(τ)K(τ ;x)|x

0
+ α(δ)

∫ x
0
K(τ ;x)u′(τ)dτ and further

v̂1(x) = −α(δ)u(x) + α(δ)

∫ x

0

K(τ ;x)u′(τ)dτ . (38)

By K(τ ;x) = H(τ ;x) exp{−
∫ x
τ
α(δ)[ŵ(ζ)− α(δ)ζ]−1dζ}, where

H(τ ;x) = exp{−
∫ x

τ

[ŵ′(ζ)− α(δ)][ŵ(ζ)− α(δ)ζ]−1dζ}

= exp{
∫ τ

x

d ln[ŵ(ζ)− α(δ)ζ]} = [ŵ(τ)− α(δ)τ ]/[ŵ(x)− α(δ)x],

(38) yields (13).

Result 5. If ŵ(0) = 0 then v̂(0)− v̂(y∗) > −ϕ(y∗, y∗, l∗j , δ).
Let ŵ(0) = 0. Then by (5) and w(y∗) = vj(r

∗), ŵ(y∗) − ŵ(0) = l∗j . So
we can find x̄ > 0 with ŵ(y∗) − ŵ(x̄) ≥ α(δ)y∗. By ŵ(0) = limx↓0 ŵ(x) = 0
and ŵ(x)− α(δ)x > 0 for x > 0, ŵ(.) is not constant over (0, ε] if ε > 0. We
claim that l∗k = v̂(0) − v̂(y∗). By the claim, v̂(.) is not constant over (0, ε]
if ε > 0. For, otherwise, by (4) and v(y∗) = vk(r

∗) and l∗k = v(0) − v(y∗),
v̂(x) = v(x) − v(0) is constant and so v̂(x) = 0 for x around 0; but because
ŵ(.) is not constant around 0, (6) cannot hold for some x and x′. So for ε > 0
there exists x(ε) ∈ (0, x̄) with v̂(0)− v̂(x(ε)) ∈ (0, εŵ(x̄)).
Now let v̂1(x) = v̂(x(ε)) for x ≤ x(ε) and v̂1(x) = v̂(x) for x > x(ε). Also,

let ŵ1(x) = ŵ(x̄) for x ≤ x̄ and ŵ1(x) = ŵ(x) for x > x̄. By construction,
ŵ1(y

∗) − ŵ1(0) ≥ α(δ)y∗, v̂1(.) and ŵ1(.) are monotonic and continuous,
and (6) holds if (v̂(.), ŵ(.)) is replaced with (v̂1(.), ŵ1(.)) as ε → 0. But by
construction, v̂1(0) − v̂1(y

∗) < v̂(0) − v̂(y∗) and so the result follows from
result 4.
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For the claim, suppose dk = l∗k − [v̂(0) − v̂(y∗)] > 0. Fix x′ > 0 so that
v(0)− v(x′) < 0.5dk. Then as x→ 0, [v(0) + dk] + v(x′) > 2[α(δ)u(x) + v(x)]
and because ŵ(.) is not constant around 0, w(0) + w(x′) > 2[w(x)− α(δ)x].
But then (x, rx) is not effi cient in the game form following c = 1 − x (j’s
continuation value is at least w(0)).

Result 6. ϕs(y, δ) and ϕ(x, y, l, δ) have the properties stated in the propo-
sition; and ϕs(y, δ) and ϕb(y, l, δ) are decreasing in δ.
Let λ(l) = [l/α(δ)− y]−1 and then from (2), we obtain

ϕ1(x, y, l, δ) ≡
∂

∂x
ϕ(x, y, l, δ) = −[α(δ)u(x) + ϕ(x, y, l, δ)]λ(l), (39)

∂

∂x
ϕ1(x, y, l, δ) = −[α(δ)u′(x) + ϕ1(x, y, l, δ)]λ(l). (40)

By (40), x 7→ ϕ(x, y, l, δ) is concave iff α(δ)u′(x) + ϕ1(x, y, l, δ) ≥ 0 or

l − ϕ(x, y, l, δ)/u′(x) ≥ α(δ)[y + u(x)/u′(x)] ∀x ∈ [0, y]. (41)

Let L = {l : (41) holds}. Because ϕ(x, y, l, δ) ≤ 0 (see (2)), (41) holds when
l ≥ α(δ)ν(y) so L is nonempty. Clearly L is closed so ϕs(y, δ) is defined.
Letting J(x, l) = u′(x)−

∫ x
0

exp[−λ(l)(x−τ)]λ(l)u′(τ)dτ , then by (14), (41)⇔
J(x, l) ≥ 0. When u′(0) is finite, integration by parts implies that J(x, l) ≥ 0
iffu′(0)+

∫ x
0
u′′(τ) exp[λ(l)τ ]dτ ≥ 0; when u′(0) is infinite, we have J(x, l) ≥ 0

iff limε↓0{u′(ε)+
∫ x
ε
u′′(τ) exp[λ(l)τ ]dτ} ≥ 0. Either way, l ∈ L if l > ϕs(y, δ),

and ϕs(y, δ) is decreasing in δ. Also, by (14), ϕb(y, l, δ) is decreasing in
δ. Next let l = ϕs(y, δ) and lb = ϕb(y, l, δ). Then (41), −ϕ1(y, y, l, δ)y > lb
(strict concavity of ϕ(.)), and l > α(δ)y imply u′(y)[l−α(δ)y] ≥ [α(δ)u(y)−lb]
and [α(δ)u(y)− lb]l > [l− α(δ)y]lb. It follows that α(δ)u(y)l[2l− α(δ)y]−1 >
α(δ)ν(y) − u′(y)l. Then some algebra yields l > 0.5α(δ)ν(y). By (41) and
continuity, l < α(δ)ν(y).

The proof of Lemma 2

For part (i), we claim that v̄(δ) is nondecreasing and right continuous in δ.
Then the result follows from the claim, that −ϕb(q, w − w, δ) and ϕs(y, δ)
are continuous and decreasing in δ (see result 6 in the proof of Proposition
4), and limδ→1 ϕb(q, w − w, δ) = limδ→1 ϕs(q, δ) = 0. For the claim, because
κ(y, η, δ) is increasing in η and ϕb(y, ls, δ) is decreasing in ls, when v̄(δ) is
attained κ(y, η, δ) − η = ϕb(y, ls, δ) (i.e., the last two inequalities in (21)
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hold as equalities) and κ(y, η, δ) − w = ls. Now fix δ0 and let δ ≥ δ0. Let
v̄(δ0) be attained by some (y, η, lb, ls) ∈ Γ(δ0). Then let η(δ) and ls(δ) satisfy
κ(y, η(δ), δ) = v̄(δ0) and ls(δ)/α(δ) = ls/α(δ0). Let lb(δ) = ϕb(y, ls(δ), δ). By
(2), ϕb(y, ls(δ), δ)/α(δ) is constant in δ; by computation, [v̄(δ0)− η(δ)]/α(δ)
is constant in δ. Hence v̄(δ0)−η(δ) = ϕb(y, ls(δ), δ). This, v̄(δ0)−w = ls, and
α′(δ) < 0 imply (y, η(δ), lb(δ), ls(δ)) ∈ Γ(δ) and, hence, monotonicity. Given
monotonicity, right continuity of v̄(.) follows from that Γ(.) is compact valued
and upper hemicontinuous. For part (ii), if supV ∈ V then supV ≤ v̄(δ) is
clear; otherwise, fix {vn} ⊂ V with lim vn = supV and passing to the limit
yields supV ≤ v̄(δ).

Completion of the proof of Lemma 3

Refer to the proof of Lemma 1. In cases (a), (d), and (e), and in cases (b)
and (c) when v = w, let (y(ς), υb(ς), ῡs(ς)) be the same as in the previous
proof. In case (b) when v > w let (y(ς), υb(ς), ῡs(ς)) = (0, v, w). In case (c)
with v > w, let v̄ be attained by some (y, η, lb, ls) ∈ Γ(δ). We claim that
there exist some (x, ζ) ∈ [0, y] × [v, η] such that v = κ(x, ζ, δ). Then set
(y(ς), υb(ς), ῡs(ς)) = (x, ζ, v̄(δ)), assuring (17). For the claim, first suppose
η ≤ w. Then by (q, w, v̄ − w,w − v) ∈ Γ(δ) (Lemma 2 (i)), y ≥ q and so
by continuity {κ(x, η, δ) : 0 ≤ x ≤ y} ⊇ [w, v̄]. So suppose η > w and we
construct a decreasing sequence {vn} with v0 = η by induction as follows. If
vn ≤ w then stop proceeding; otherwise let vn+1 = κ(0, vn, δ). Notice that
vn+1 > w implies vn+1 < vn (for, vn+1 ≥ vn implies vn ≤ v), and, also, the
construction stops by finite steps (otherwise the sequence converges to v).
Now for w < v ∈ [vn+1, vn]: if n = 1 then v = κ(x, v0, δ) for some x ∈ [0, y];
if n > 1 then v = κ(0, ζ, δ) for some ζ ∈ [vn, vn−1].
Given A(.), let ιs(z, ς) be the same as in (20) except here ιs(0, ς) = 0

(in (20) ιs(0, ς) = 0 because there y(ς) = α(δ)[ῡs(ς)− υs(ς)]). Let ιb(z, ς) =
ιb(y(ς), ς) if z ∈ (y(ς), 1] and ιb(z, ς) = ϕ(z, y(ς), ϕs(y(ς), δ), δ) if z ∈ [0, y(ς)].
Next we consider y(ς) > 0 (treating y(ς) = 0 as a trivial case). If c ∈
[1 − y(ς), 1), then by (39), l′s(y)[α(δ)u(y) + lb(y)] = −l′b(y)[ls(y) − α(δ)y],
where y = 1− c, lb(x) = ϕ(x, y, ϕs(y, δ), δ), and ls(x) = ϕs(y, δ)− α(δ)x; by
(41) (x 7→ lb(x) is concave), u′(y)[ls(y)− α(δ)y] ≥ α(δ)u(y) + lb(y). So (y, y)
solves the problem in (16) and Us(y, y, ς) = ϕs(y(ς), δ) − α(δ)y(ς). Also, if
c < 1 − y(ς), then (y(ς), y(ς)) solves the problem. Finally, (0, 0) solves the
problem if c = 0 and Us(0, 0, ς) = 0.
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Completion of the proof of Proposition 9

First we derive from (25)-(27) that

v1 − v−N+1
α(δ)

=
(K1 − 0.5ρ)/K2 − (π1 + π2)0.5ρq

∗

1/(K2δN) + (π1 + π2)0.5(1− ρ)δ
δ, (42)

v2 − v1
α(δ)

=
K3K1 + 0.5ρq∗ −K30.5ρ

1/(π1 + π2) +K2K3

δ, (43)

where K1 = π10.5ρu(q∗)+0.5ρ, K2 = 1−0.5(1−ρ)δπ1, K3 = 0.5(1−ρ)δ ·δN ,
and δN =

∑N−1
n=0 δ

n. By (25), v−N+1 = 0.5ρ(1− δ)δN + δNv1. Subtracting v1
from both sides of this equality and from both sides of (27), we have

v1 − v−N+1
1− δ = (v1 − 0.5ρ)δN ,

v2 − v1
1− δ = (K1 − v1)/K2. (44)

Substituting v1 − v−N+1 and v2 − v1 in (44) into (26) and following some
lengthy computation, we have

v1 =
K1/K2 − (π1 + π2)0.5ρq

∗ + (π1 + π2)K30.5ρ

1/K2 + (π1 + π2)K3

. (45)

Substituting (45) into (44) yields (42) and (43).
Next we construct A(ς) in the following nine cases.
(a) vb, vs ≤ v0. Then A(ς) = (0, vb+, vs+, vb+, vs+), where vb+ and vs+

satisfy vb = 0.5ρ(1− δ) + δvb+ and vs = 0.5ρ(1− δ) + δvs+.
(b) vb ≤ v0 and vs > v0. Then A(ς) = (0, vb+, v1, vb+, v1) for vb+ in (a).
(c) vb > v0 and vs ≤ v0. Then A(ς) = (0, v1, vs+, v1, vs+) for vs+ in (a).
(d) vb, vs > v0 and vb, vs /∈ V . Then A(ς) = (0, vb, vs, vb, vs).
(e) vb > v0 and vs = v2. Then A(ς) = (0, v1, v1, v1, v1).
(f) vb = v ∈ (v0, v1) and vs = v1. Letting η(x) = ϕ(x, q∗, v1 − v−N+1, δ),

then A(ς) = (ŷ(v), v1, v1, v1 − η((ŷ(v)), v−N+1 + α(δ)(q∗ − ŷ(v))). To define
ŷ(v), let λ(x) = 0.5π1δ{ρα(δ)[u(q∗) − u(x)] + (1 − ρ)[v2 − v1 + η(x)]} and
let λ(ŷ(v)) = v1 − v. Existence of ŷ(v) follows from continuity of x 7→ λ(x),
λ(q∗) = 0, and λ(0) = 0.5π1δ{ρα(δ)u(q∗) + (1 − ρ)(v2 − v1)} > v1 − v0 (use
(45), (25), and (27)).
(h) vb ≥ v1 and vs = v1. Then A(ς) = (q∗, v1, v1, v2, v−N+1).
(i) vb ∈ {v1, v2} and vs ∈ (v0, v1). Then A(ς) = (q∗, v1, v1, v2, v−N+1).
(j) vb ∈ {v1, v2} and vs = v ∈ (v1, v2). Letting η(x) be the same as in (f),

then A(ς) = (ŷ(v), v1, v1, v1 − η((ŷ(v)), v−N+1 + α(δ)(q∗ − ŷ(v))). Here ŷ(v)
satisfies 0.5(π1 + π2)δ[q

∗ − ŷ(v)] = v − v1.
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To verify that (36) holds with the above constructed terms in the right
side, compare it with (26) if v ∈ (v0, v1) and with (27) if v ∈ (v1, v2); v
outside these two intervals should be evident.
Finally, we construct hk,t as follows. Refer to the proof of Proposition 6

and here we make four modifications. First let hk,1(β0) = vn if k ∈ I0,n, where
I = I0,−N+1 ∪ ...∪ I0,2 and the measure of I0,n is πn. Second, if vb, vs /∈ {vn},
then let g(r, ς) = ς; otherwise, let g(r, ς) = (ῡb(ς) + ιb(r

2
b , ς), υs(ς) + ιs(r

2
b , ς)).

Third, let Dt = {i ∈ I : vi,t /∈ {vn}}. Fourth, let hk,t(βt−1) be determined as
follows.
(i) Either #Dt ≤ 1; or Dt = {i1, i2} and φi1,t−1 = i2. Then hk,t(βt−1) =

vk,t.
(ii) Either Dt = {i1, i2}, φi1,t−1 6= i2, i1 ∈ Dt−1, and i2 /∈ Dt−1; or

Dt = {i1, i2, i3} and φi2,t−1 = i3. If k ∈ {i2, φi2,t−1}, then hk,t(βt−1) = vk,t;
otherwise hk,t(βt−1) = hk,1(β0).
(iii) Other Dt. Then hk,t(βt−1) = hk,1(β0).

The proof of Proposition 11

Suppose by contradiction that f is supported by an equilibrium σ for some
trading mechanism. Let each of k and j = φk,t have some on-path start-of-t
holdings. Let θk,t = 0. Let ln be the transfer of money specified by σk,t
and σj,t when ωk,t = n, n ∈ {0, 1}. Then letting vi(l) be i’s start-of-t + 1
continuation value if l is the transfer of money at t, vi(l1) = vi(l0) = w,
i ∈ {k, j}. Let l = min{l1, l0} and l̄ = max{l1, l0}. Free disposal of money
implies l > 0 (otherwise when ωk,t = 1, j is better off by choosing autarky
and disposing of −l units of money). Then again by free disposal of money,
vk(l̄) = vk(0) (otherwise when ωk,t = 0, k is better off by choosing autarky).
For each meeting between two agents with on-path holdings, there is such

a l̄. Put l̄ from all such meetings together to form a set, called S. Now let
the l̄ at some date-t on-path meeting be suffi ciently large in a way described
below. For this meeting, call the buyer as k, denote his pre-meeting money
holdings by mk,t, and denote the l̄ by l̄(t). Now we show that when ωk,t = 0,
k can benefit from deviating to autarky.
With this deviation, k has mk,t at the start of t+ 1. If θk,t+1 = 0, then by

free disposal of extra money k can keep his holdings on path before meeting
φk,t+1. So let θk,t+1 = 1 and let ln(t + 1) be the equilibrium transfers of
money if ωk,t+1 = n and if k carries mk,t − l̄(t) into this date-t+1 meeting.
If l̄(t + 1) = max{l1(t + 1), l0(t + 1)} ≤ l̄(t), then k can keep his holdings
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after the date-t + 1 meeting on path (by free disposal of extra money) even
though he deviates to autarky (so his consumption is 1 instead of 1− q when
ωk,t+1 = 1) at t+ 1. Hence k’s date-t deviation is beneficial when l̄(t) is such
that the measure of meetings in t+ 1 with l̄(t+ 1) ≤ l̄(t) is suffi ciently close
to unity. If∞ > supS ∈ S, then let l̄(t) = supS. If∞ > supS /∈ S, then let
l̄(t) be suffi ciently close to supS. If supS = ∞, then let l̄(t) be suffi ciently
large so that the measure of agents with at least l̄(t) is suffi ciently close to
zero (recall that the sock of money is fixed).
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