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Abstract

Search is embedded in an overlapping-generations model. The
young participate in a centralized market, and then are matched in
pairs in a decentralized market. The old only participate in the cen-
tralized market. If the buyer’s bargaining power in pairwise trade is
close to unity and if the old are risk averse, then the golden-rule rate
of money transfer is positive. Such risk aversion, the pairwise meet-
ings, and dependence of the young’s saving on the rate of return are
necessary for this result.
JEL classification: E30, E31, E40, E41
Keywords: overlapping-generations; search; money creation; golden

rule

1 Introduction

I develop a model of money with two frictions that usually do not appear in
the same model: the overlapping-generations (OLG) friction and the search
friction. In this model, people live for two periods. In each period, the young
and the old participate in a centralized market; then the old die and the young
are matched in pairs in a decentralized market.1 This setup is tractable,

∗I thank Karl Shell for helpful conversations. I am particularly indebted to Neil Wallace
for detailed comments and valuable suggestions.

1Maeda [9] and Russell [11] study different OLG models with search. In neither is there
centralized trade.
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because, as in any two-period-lived OLG model, the old sell all their money
which implies that the inherited distribution of wealth induced by pairwise
trade is not a state variable.2 Moreover, the model can be specified so that
the pairwise meetings are necessary for money to be valued.
There was a debate about whether the ordinary OLG model is a suitable

model of money. Some argued that the model is misleading because of the
absence of a transactions role of money (see, e.g., Tobin [13]). One response
was to add cash-in-advance or money-in-the-utility-function (see, e.g., Mc-
Callum [10]). Here, a transactions role of money is incorporated using the
pairwise meetings and anonymity.
This model has new implications for the optimal rate of lump-sum money

creation compared to the ordinary OLG model and the OLG model with
money-in-the-utility-function (see, e.g., Abel [1]); optimality here means
maximization of the steady-state expected lifetime utility–golden-rule op-
timality. In particular, if the buyer’s bargaining power in pairwise trade is
close to unity and if the old are risk averse, then the golden-rule rate of
money creation is positive. Such risk aversion, the pairwise meetings, and
dependence of the young’s saving on the rate of return are necessary for this
result.
To see why a positive transfer can be optimal, let buyers have all the

bargaining power and consider a small reduction in the zero-inflation steady
state saving (in the form of money) of one young person. The first-order effect
from this reduction on this person’s own lifetime expected utility is zero. Now
consider his partner in a pairwise meeting. If the partner is the seller in the
meeting, then she receives the same utility from trading with this person
and all other buyers. But if the trading partner is the buyer in the meeting,
then she receives more utility from trading with this person than from other
sellers for the following reason. Because the old are risk averse, the post-
pairwise-meeting value function of money is strictly concave. And because
this seller is poorer than other sellers, this strict concavity implies that he
produces more than other sellers for the same payment. This leads to a better
payoff for the trading partner. Therefore, there is a first-order effect from
the person’s reduced saving on the lifetime utility of others, an externality.
Money creation that comes about through lump-sum transfers to the young
produces such reduced saving (provided that saving depends on the rate of

2This feature is exploited by Zhu and Wallace [16, section 3] to complete a general-
equilibrium analysis. The version there is special in that the young’s saving is exogenous.

2



return) and, therefore, is beneficial. As the above explanation suggests, both
risk aversion for the old and the pairwise meetings are necessary for this
effect to occur.
The rest of the paper is organized as follows. In section 2, I describe

the model and equilibrium and show existence. I establish results about
the golden-rule rate of money transfer in section 3. In section 4, I discuss
introducing capital into the model, and some insight from this model that
may carry over to the model of Lagos and Wright [8].

2 The model

In this section, I describe the model, define equilibrium, and show existence.

2.1 Environment

Time is discrete, dated as t ≥ 0. Each date has two stages, 1 and 2. At
the start of each date t, there is a unit mass of newly-born people, and each
person lives for three consecutive stages. The person is young at date t
or his first two stages, and old at date t + 1 or his third stage. There is
one produced and perishable good per stage. There is another durable and
intrinsically useless object called money; the initial old–those who die at
the end of stage 1 of date 0–hold the initial money stock M0.
A person born at t ≥ 0 can produce but cannot consume at his first stage,

and he can consume but cannot produce at his third stage. At his second
stage, he has an equal chance to be a buyer–who can consume but cannot
produce, or a seller–who can produce but cannot consume. At his ith stage,
his utility from consuming q (given he can) is ui(q), and his disutility from
producing is q (given he can) is ci(q). I assume throughout, unless specified
otherwise, that c0i > 0, c00i ≥ 0, u0i > 0, and u00i ≤ 0. The person’s lifetime
utility is the sum of his stage utility, and he maximizes his expected lifetime
utility.3

3In this setting, if the person’s second stage is removed and c1(q) = U(ω)− U(ω − q)
and u3(q) = V (e+ q), then the model is equivalent to the ordinary two-period-lived OLG
model in which each person is endowed with ω when young and e when old, and has the
utility function U when young and V when old.
There are several variants of this setting. For example, the person can consume at his

first stage and produce at his third stage. Also, the person can be idle at his second stage
with some probability, and cannot produce at his third stage with some probability. Such
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At stage 1 of date t, the young and old meet in a centralized spot market.
At stage 2 of date t, the young are matched in pairs; matching is random
but, without loss of generality, a buyer always meets a seller. People are
anonymous so money has an essential role in facilitating trade. The trade
in the centralized market is competitive. In each pairwise meeting, each
person’s money holding is common knowledge; the surplus from trade is
split by generalized Nash bargaining in which the buyer’s bargaining power
is θ ∈ (0, 1]. Finally, each young receives τMt units of money from the
government in the date t centralized market, whereMt is the average holding
of the old at the start of date t and τ ≥ τ > −1 for some negative τ .4

2.2 Definition of equilibrium

Let ρt be the real balance held by the old (hereafter, the real balance when
the context is clear) in the date t centralized market; that is, ρt is the product
of Mt and the market price of money in term of goods. Let the individual
state x be the ratio of the individual money holding to the current stock of
money. Now I describe the individual choice problems by backward induc-
tion, starting with the end of date t.
First, a person who enters old age in state z will receive the payoff

u3(zρt+1). Then consider a date t pairwise meeting between a buyer in
state zb and a seller in state zs. A trade (q, l), where q is the transfer of
the good and lMt+1 is the transfer of money, will give the buyer a surplus
u2(q) + u3(zbρt+1 − lρt+1) − u3(zbρt+1), and the seller a surplus −c2(q) +
u3(zsρt+1 + lρt+1)− u3(zsρt+1). Therefore, the trade reached in the meeting,
denoted (q(zb, zs; ρt+1), l(zb, zs; ρt+1)), is a maximizer of the problem

max
q≥0,0≤l≤zb

[u2(q) + u3(zbρt+1 − lρt+1)− u3(zbρt+1)]
θ (1)

×[−c2(q) + u3(zsρt+1 + lρt+1)− u3(zsρt+1)]
1−θ.

The buyer’s payoff is

f(zb, zs; ρt+1) = u2(q(zb, zs; ρt+1)) + u3(zbρt+1 − l(zb, zs; ρt+1)ρt+1), (2)

and the seller’s payoff is

g(zb, zs; ρt+1) = −c2(q(zb, zs; ρt+1)) + u3(zsρt+1 + l(zb, zs; ρt+1)ρt+1). (3)

variants are discussed in the working paper version [15]. The results are similar for all
these variants.

4For a technical reason, I need τ in a closed set. But τ can be arbitrarily close to −1.
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Hence, before the pairwise meetings, the expected utility of a young per-
son in state x is

v(x; ρt+1, μt) = 0.5

Z
[f(x, y; ρt+1) + g(y, x; ρt+1)]μt(dy), (4)

where μt is the distribution of young individual states just before the pairwise
meetings, and so the young person’s problem in the date t centralized market
is

max−c1((1 + τ)xρt − τρt) + v(x; ρt+1, μt) s.t. x ≥ max{0,
τ

1 + τ
}. (5)

(When θ < 1, f and g in (4) need not be concave in x, so v need not be
concave in x. Hence the young need not leave the centralized market with
the same amount of money and therefore μt need not be degenerate.) Let

X(ρt, ρt+1, μt) = {x : x is a solution to (5)}. (6)

The support of μt, denoted supp μt, must be a subset of X. Also, market
clearing requires

R
xμt(dx) = 1. Therefore, we have

Definition 1 A sequence {(ρt, μt)}∞t=0 is a monetary equilibrium given (θ, τ)
if ρt > 0,

R
xμt(dx) = 1, and supp μt ⊂ X(ρt, ρt+1, μt), all t. A pair (ρ, μ) is a

monetary steady state given (θ, τ) if the sequence {(ρt, μt)}∞t=0 with (ρt, μt) =
(ρ, μ), all t, is a monetary equilibrium.

2.3 Existence of a monetary steady state

Existence can be established under fairly general assumptions.

Proposition 1 Suppose c001 > 0, c01(∞) = ∞, c2(q) = q, u2(0) = 0, u002 < 0,
and u02(0) =∞. Also, suppose [u2(q)/u02(q)][u002(q)/u02(q)](1− 1/θ) is bounded
above for q > 0 in a neighborhood of 0. Then there exists a monetary steady
state given (θ, τ).

Proof. See the appendix.

The assumptions in Proposition 1 are maintained throughout unless ex-
plicitly noted. The boundedness condition on h = (u2/u

0
2)(u

00
2/u

0
2)(1 − 1/θ)

holds if θ = 1 and is otherwise satisfied if u2 is a power function; u2(0) = 0
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and linearity of c2 are without loss of generality; while c01(∞) = ∞ ensures
that the real balance is bounded above.
I prove Proposition 1 by constructing a mapping whose fixed point (ρ, μ)

is a monetary steady state. As given in the appendix, this mapping assigns
to each (ρ, μ) the set of probability measures implied by all randomizations
over X(ρ, ρ, μ), and assigns to each measure σ in this set some ρ0 such that
ρ0 ≷ ρ if

R
xσ(dx) ≷ 1. That is, the mapping raises (reduces) the real balance

if the excess demand for money is positive (negative).
To carry out this approach, I must find a lower bound on ρ so that the

excess demand for money is positive if ρ is close to this bound. In turn, I
must show that for small ρ, the payoff to a buyer in a pairwise meeting from
a marginal increment of his pre-meeting state x ≤ 1 is sufficiently large.
This uses u02(0) =∞ and boundedness of h. I need to bound h because the
best lower bound I can find on the buyer’s payoff from such an increment is
[C + h(ρ)]−1u02(ρ)u

0
3(ρ)ρ for some constant C.

For comparison and for future reference, consider the model without the
pairwise meetings; that is, the special case, u2 = c2 = 0. Then, we have

Corollary 1 If u2 = c2 = 0, then (1 + τ)c01(0) < u03(0) is sufficient and
necessary for existence of a monetary steady state under (θ, τ).

Proof. Let (ρ, μ) be a monetary steady state with u2 = c2 = 0 given
(θ, τ). Under the maintained assumptions, μ = μd, where supp μd = {1},
and ρ is determined by (1 + τ)c01(ρ) = u03(ρ). Because c

00
1 > 0, (1 + τ)c01(0) <

u03(0)⇔ ρ > 0.

3 The optimal rate of money transfer

Here, optimality is maximization of the young person’s steady-state expected
lifetime utility, golden rule optimality. I give sufficient condition conditions
for a positive transfer to be optimal.

Proposition 2 If u03(q)q is non decreasing and u
00
3 < 0 and if θ is sufficiently

close to 1, then the golden-rule rate of transfer is positive.

Proof. The proof proceeds in two steps. In step 1, I prove the result
for θ = 1; a useful intermediate result is uniqueness of the monetary steady
state under each τ . In step 2, I show that the result holds for θ near 1; here,
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I use the uniqueness result in step 1 and a continuity property of the main
mapping in the proof of Proposition 1.
Step 1. As just indicated, θ = 1 in this step. First, I characterize mone-

tary steady states without appealing to monotonicity of u03(q)q and u003 < 0.
For each ρ > 0, let (q(ρ), l(ρ)) with l(ρ) ∈ (0, 1] satisfy

q(ρ) = u3(ρ+ l(ρ)ρ)− u3(ρ), (7)

u02(q(ρ))u
0
3(ρ+ l(ρ)ρ) ≥ u03(ρ− l(ρ)ρ) strict only if l(ρ) = 1. (8)

Notice that such (q(ρ), l(ρ)) is unique. For ρ > 0 and τ ≥ τ , let

F (ρ, τ) = (1 + τ)c01(ρ)− 0.5u02(q(ρ))u03(ρ+ l(ρ)ρ)− 0.5u03(ρ). (9)

I claim that (ρ, μ) is a monetary steady state under τ if and only if μ = μd
(supp μd = {1}) and F (ρ, τ) = 0, and that the young person’s expected
lifetime utility in the steady state (ρ, μd) is

W (ρ) = −c1(ρ) + 0.5[u2(q(ρ)) + u3(ρ− l(ρ)ρ)] + 0.5u3(ρ). (10)

To see this claim, let (ρ, μ) be a monetary steady state given τ . By θ = 1
and c2(q) = q, the problem in (1) with ρt+1 = ρ can be written as

f(zb, zs; ρ) = maxu2(q)+u3(zbρ−lρ) s.t. q = u3(zsρ+lρ)−u3(zsρ), 0 ≤ l ≤ zb.
(11)

So g(zb, zs; ρ) = u3(zsρ), and f(zb, zs; ρ) is concave in zb. Hence v(x; ρ, μ) is
concave in x and μ = μd. Now consider a young person in state x meets a
partner in state 1. If this person is the seller, then g(1, x; ρ) = u3(xρ). When
x = 1, the payoff to this person from a marginal increment of his state is
u03(ρ)ρ. If this person is the buyer, then by u02(0) =∞, (q(x, 1; ρ), l(x, 1; ρ))
(the maximizer of the problem in (11) with (zb, zs) = (x, 1)) is the unique
(q, l) satisfying q = u3(ρ + lρ) − u3(ρ), and u02(q)u

0
3(ρ + lρ) ≥ u03(xρ − lρ)

strict only if l = x. By the envelope condition, when x = 1, the payoff to
this person from a marginal increment of his state is u02(q(ρ))u

0
3(ρ + l(ρ)ρ)ρ

(notice that (q(ρ), l(ρ)) = (q(1, 1; ρ), l(1, 1; ρ))). Hence x = 1 ∈ X(ρ, ρ, μd)
(market clearing) if and only if F (ρ, τ) = 0.
Next, I show a weaker result: If c01(0) ≥ u03(0), then some positive transfer

dominates zero transfer. That is, when the pairwise meetings are necessary
for money to be valued given τ = 0 (see Corollary 1), some positive transfer
is beneficial.
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To see this, first fix τ ≥ 0. By Proposition 1, there exists some ρ, denoted
ρ(τ), satisfying F (ρ, τ) = 0. By c01(0) ≥ u03(0) and τ ≥ 0, F (ρ, τ) = 0 only if
the inequality in (8) is strict, or only if G(ρ, τ) = 0, where

G(ρ, τ) = (1 + τ)c01(ρ)− 0.5u02(u3(2ρ)− u3(ρ))u
0
3(2ρ)− 0.5u03(ρ).

By monotonicity of u03(q)q, for each ρ > 0, G1(ρ, τ) (the derivative of G(, .τ)
at ρ) is positive, so ρ(τ) is the unique ρ satisfying G(ρ, τ) = 0. Hence
(ρ(τ), μd) is the unique monetary steady state given τ . Next, by the im-
plicit function theorem (applied to G(ρ(τ), τ) = 0), for each τ ≥ 0, ρ0(τ) =
−c01(ρ(τ))/G1(ρ(τ), τ) < 0. Also, fixing l(ρ) = 1 in (10) and (7) and using
G(ρ(τ), τ) = 0, we obtain the derivative of W at ρ = ρ(τ) as

W 0(ρ) = τc01(ρ) + 0.5u
0
2(q(ρ))∆,

where
∆ = u03(2ρ)− u03(ρ).

By u003 < 0, ∆ < 0 so V (τ) =W (ρ(τ)) is strictly increasing on [0, �] for some
� > 0 (notice that V 0(0) =W 0(ρ(0))ρ0(0) > 0). This proves the weaker result.
Next, I show that the golden rule rate of transfer is positive. Now I

have to directly work on F . A technical issue is that F1(ρ, τ) (the derivative
of F (., τ) at ρ) need not always be defined. This issue is dealt with in the
appendix. By Lemma 3 (which applies if u03(q)q is non decreasing and u

00
3 < 0,

or if u003 = 0), for each τ ≥ τ , there exists a unique ρ, denoted ρ(τ), satisfying
F (ρ, τ) = 0; the derivative of W at ρ = ρ(τ) is

W 0(ρ) = τc01(ρ) + 0.5u
0
2(q(ρ))∆, (12)

where
∆ = u03(ρ+ l(ρ)ρ)− u03(ρ);

and the left and right derivatives of ρ(.) at τ (the right derivative if τ = τ)
are defined and negative. By u003 < 0, ∆ < 0 so V (τ) = W (ρ(τ)) is strictly
increasing on [τ , �] for some � > 0. This completes step 1.
Step 2. See Lemma 4 in the appendix.

By the definition of W 0 (see (12)), in the steady state (ρ(τ), μd), if the
real balance changes by dρ, then the young person’s expected lifetime utility
changes by W 0dρ. Because W 0 6= 0, there are effects from the change in
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the real balance the young person can not capture by his own action–in
specific, by choosing his own saving in term of money (the young person’s
expected lifetime utility changes by F (ρ(τ), τ)dρ if he changes his real saving
by dρ). In (12), τc01(ρ) reflects one such effect: The young person’s real
wealth changes by τdρ in a lump sum way. Also, u02(q(ρ))∆ reflects another
such effect: When the young person is the buyer in a pairwise meeting, if his
payment measured by its real value in the coming competitive market does
not change, then the amount of good he receives from the seller changes by
∆dρ. The first effect presents in ordinary OLG models. The second does
not; it comes from the externality described in the introduction.
There is no such externality when the old are risk neutral, so a positive

transfer cannot dominate zero transfer.

Corollary 2 If u003 = 0 and if θ is sufficiently close to 1, then the golden-rule
rate of transfer is non positive.

Proof. When θ = 1, u003 = 0 implies ∆ = 0 in (12). So the golden-rule
rate of transfer is zero. The rest of the proof follows from the exact argument
in the proof of Lemma 4.

I suspect that Corollary 2 holds for general θ < 1, but proving such result
is difficult because the distribution μ in a monetary steady state need not
be degenerate. With more restrictive assumptions to ensure such degeneracy
for general θ, I can show that ρ(τ) is strictly decreasing in τ and W 0(ρ(0))
has the same sign as

η ≡ (1− θ) + (1− θ)u02(q(1, 1; ρ)) + θu002(q(1, 1; ρ))[q(1, 1; ρ)− ρ], (13)

which implies some negative transfer dominates zero transfer (θ < 1 ⇒
q(1, 1; ρ) < ρ ⇒ η > 0). The term η reflects the so-called holdup problem.
This problem does not rely on the curvature of u3, and it can be dominant
when the buyer’s bargaining power is far away from unity so that some
negative transfer dominates zero transfer even if the old are risk averse.
When the pairwise meetings are dropped, both the externality driving

Proposition 2 and the holdup problem are absent and there is no room for
policy intervention.

Corollary 3 If u2 = c2 = 0, then the golden-rule rate of money transfer is
zero.
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Proof. If c01(0) ≥ u03(0), then ρ > 0 only if τ < 0 (see Corollary
1). But the young person’s expected steady state utility is less than a =
−c1(0) + u3(0). If c01(0) < u03(0) and if (1 + τ)c01(ρ) = u03(ρ) has a posi-
tive solution, denoted ρ(τ), then the young person’s expected lifetime utility
is W (ρ(τ)) = −c1(ρ(τ)) + u3(ρ(τ)) (notice that W (ρ(0)) > a). Because
W 0(ρ(τ)) = τc01(ρ(τ)) and ρ0(τ) < 0, the golden-rule rate is zero.

Policy is irrelevant if the real balance does not respond to it.

Corollary 4 If c1(q) = 0 for q ∈ [0, ω] and c1(ω) = ∞ for q > ω, then
for any θ, the young person’s steady-state expected lifetime utility does not
depend on τ .

Proof. Fix θ. It suffices to note that under each τ , there exists a unique
monetary steady state (ρ, μ) = (ω, μd).

Thus far, I consider transfers to the young in the centralized market.
Such transfers and transfers to the old are equivalent if the cash constraints
of buyers are not binding in the pairwise meetings. Otherwise, the two types
of transfers support different allocations and the optimality of a positive
transfer to the young does not imply the optimality of a positive transfer to
the old. For example, in a Corollary 4 setting with ω = 1, u2(q) = 2

√
q, and

u3(q) = q, all transfers to the young are equivalent, but any positive transfer
to the old decreases welfare of the young. A related point is the risk-sharing
effect of money creation. Levine [7] presents an infinitely-lived agents model
in which money creation is beneficial because of this effect. Pairwise trade in
this OLG model does induce a risk to each young person, but, by itself, the
risk does not call for policy intervention. Indeed, in any Corollary 4 setting,
a positive transfer to the old gives rise to risk-sharing, but in the above
example such a transfer reduces the young person’s steady-state expected
lifetime utility.
Finally, even if the pairwise trading protocol is price taking, a positive

transfer to the young can still be beneficial. With some additional assump-
tions, I can show ρ0(τ) < 0 and W 0(ρ(0)) has the same sign as (κ/ρ)0, where
κ is the stage 2 real balance. Moreover, (κ/ρ)0 < 0 if u003 < 0, and (κ/ρ)

0 = 0
if u003 = 0. So some positive transfer dominates zero transfer if u

00
3 < 0. To see

why (κ/ρ)0 matters, consider a buyer in state 1 who chooses qb2 (his stage 2
consumption) and qb3 (his stage 3 consumption) to maximize

u2(qb2) + u3(qb3), s.t. (κ/ρ)qb3 + qb2 = κ and qb2 ≤ κ.
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Now a change in ρ has two two effects on his first constraint–one through a
change in κ and the other through a change in (κ/ρ), and the second effect
is the one that he can not capture by his own action.

4 Discussions

There is no capital in the present model. One may introduce capital as an
input for production in the centralized market. To maintain the transactions
role of money, one may assume that neither capital nor certificates of its
ownership can be carried into the pairwise meetings.5 More interestingly, one
could assume some private information about the quality of capital, similar
to the private information on the quality of goods in Williamson and Wright
[14]. Neither approach would eliminate the externality driving Proposition
2. Of course, in a version with capital, money creation could induce more
capital accumulation, an effect that has long been discussed in literature (see,
e.g., Tobin [12]).
Deviatov and Wallace [6] and Deviatov [5] study a search model with

infinitely-lived agents and with only pairwise trade. They select a trading
protocol to maximize a social planner’s objective function. They find ex-
amples in which money creation is beneficial. Results from [5, 6] motivate
the following question: In the OLG model, if the government can choose the
rate of money transfer and the trading protocol (subject to some incentive
constraints), does the optimal policy involve money creation?
Lagos and Wright [8] (LW) build an infinitely-lived agent model with

alternating decentralized-centralized markets. For tractability, they assume
quasi-linear preferences on centralized-trade goods. This special assumption
implies the post-pairwise-meeting value function of money is affine. They
find that the Friedman rule is optimal. This OLG model was initially mo-
tivated to understand significance of wealth effects of money creation that
are eliminated by their special assumption. There is a sort of observational
equivalence between the LWmodel and the OLG model with the risk neutral
old. While the effects from money creation differ in the LW model and the
equivalent OLG model, the difference disappears if people in the LW model
are not endowed with the initial money stock (see the appendix for detail).
Based on these observations and Proposition 2, I suspect that the Friedman

5Aruoba and Wright [3] make such an assumption. As long as olds are risk averse, one
can break dichotomy reported by [3] in the OLG model.
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rule is not optimal in the LW model if quasi linearity is replaced by strict
concavity and if the buyer’s bargaining power is close to unity.6

This OLG model is tractable because people only live for three stages.
Such a model is not suitable for serious quantitative exercises, but it has a
natural extension for such exercises. One version would have, an old person
dies with some probability. Of course, then, the inherited distribution of
wealth would become a state variable. Tractability would be lost in such a
version model, so it would have to be solved numerically.

Appendix

Proof of Proposition 1
In this proof, I assume that u03(0) is finite, the case of the most interest.

(When u03(0) =∞, the proof is similar but differs in some detail.) Let ρ0 > 0
and ρ1 > ρ0, and let Z > 1. Let ρ = [ρ0, ρ1], and let μ be the set of all
probability measures on [0, Z]. For μ ∈ μ, let Eμ ≡

R
xμ(dx), and let the

measure μ̄ be defined by μ̄(A)Eμ = μ(A) if Eμ > 1, and μ̄(A) = μ(A) if
Eμ ≤ 1. For (ρ, μ) ∈ ρ × μ , let Σ(ρ, μ) be the set of probability measures
implied by all randomizations over X(ρ, ρ, μ̄) (see (6)). Then let

T (ρ, μ) = {(φ(ρ, σ), σ) : σ ∈ Σ(ρ, μ)} (14)

φ(ρ, σ) = ρ+ ρ0(Eσ − 1)/Z. (15)

A fixed point of T is a monetary steady state under (θ, τ).
The next lemma provides conditions that ensures existence of a fixed

point of T .

Lemma 1 Let ρ0 ∈ (0, 1), ρ1 > 3, and Z > 1. Suppose for (ρ, μ) ∈ ρ × μ,
(R1) ρ > ρ1− ρ0 ⇒ max X(ρ, ρ, μ̄) ≤ 1; (R2) ρ < 2ρ0 ⇒ minX(ρ, ρ, μ̄) ≥ 1;
and (R3) max X(ρ, ρ, μ̄) ≤ Z. Then there exists a fixed point of T .

Proof. First, fix (ρ, μ) ∈ ρ×μ and σ ∈ Σ(ρ, μ). Let ρ0 = ρ+ρ0(Eσ−1)/Z.
Now ρ ∈ [2ρ0, ρ1 − ρ0] and (R3)⇒ ρ0 ∈ ρ; ρ > ρ1 − ρ0 and (R1)⇒ Eσ ≤ 1⇒
ρ0 ∈ ρ; and ρ < 2ρ0 and (R2)⇒ Eσ ≥ 1⇒ ρ0 ∈ ρ. So φ(ρ, σ) ⊂ ρ. Then by
(R3), T (ρ, μ) ⊂ ρ×μ.

6This conjecture seems to be consistent with the result reported by Chiu and Molico
[4] who study such a LW model. That is, the welfare costs of inflation in their model are
much lower than those in [8]. The externality driving Proposition 2 seems to contribute
to this result.
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Next, by u003 ≤ 0 and u002 < 0, (q(x, y; ρ), l(x, y; ρ)) (see (1)) is the unique
(q, l) satisfying

u02(q)u
0
3(yρ+ lρ) ≥ u03(xρ− lρ) strict only if l = x, (16)

θu02(q)[−q + u3(yρ+ lρ)− u3(yρ)] (17)

= (1− θ)[u2(q) + u3(xρ− lρ)− u3(xρ)].

Then by the theorem of maximum (see [2, p. 473])), q(., .; .) and l(., .; .)
are uniformly continuous on [0, Z]2 × ρ (uniformly because the domain is
compact), so are f(., .; .) and g(., .; .) (see (2)-(3)). LetV be the set of all non
decreasing and continuous real-valued functions on [0, Z]. Fix (ρ, μ) ∈ ρ×μ.
It is standard to show (by u002 < 0 and u

0
3 ≤ 0 and (16)-(17)) that for each y ∈

[0, Z], f(., y; ρ) and g(y, .; ρ) are strictly increasing. So v(.; ρ, μ̄) (see (4)) is
strictly increasing. Because f(., .; ρ) and g(., .; ρ) are uniformly continuous on
[0, Z]2, by [2, 12.6 Corollary, p. 417], xn → x implies v(xn; ρ, μ̄)→ v(x; ρ, μ̄).
So v(.; ρ, μ̄) is continuous. Hence v(.; ρ, μ̄) ∈ V.
Next, let V be equipped with the sup norm topology. Let μ be equipped

with the weak* topology. By [2, 12.10 Theorem, p. 419], μ is metrizable
and compact. Fix x ∈ [0, Z]. Because f(x, .; .) and g(., x; .) are uniformly
continuous on [0, Z] × ρ, by [2, 12.6 Corollary, p. 417], (ρn, μn) → (ρ, μ)
(so μ̄n → μ̄) implies v(x; ρn, μ̄n) → v(x; ρ, μ̄). Because x is arbitrary and
because v(.; ρ, μ̄), v(.; ρn, μ̄n) ∈ V, it follows that v(.; ρn, μ̄n) → v(.; ρ, μ̄).
Hence (ρ, μ) 7→ v(.; ρ, μ̄) is continuous. Because k : [0, Z] × ρ×V → R
with k(z, ρ, v) = −c1((1 + τ)zρ − τρ) + v(z) is continuous, by the theo-
rem of maximum, Y : ρ×V → [0, Z] with Y (ρ, v) = argmaxz k(z, ρ, v)
where z ∈ [max{0, τ

1+τ
}, Z] is compact-valued and upper hemicontinuous.

Hence (ρ, μ) 7→ X(ρ, ρ, μ̄) (the composition of (ρ, μ) 7→ v(.; ρ, μ̄) and (ρ, v) 7→
Y (ρ, v)) is compact-valued and u.h.c. on ρ × μ; so is (ρ, μ) 7→ Σ(ρ, μ); and
so is (ρ, μ) 7→ T (ρ, μ). Because Σ and hence T is convex-valued, by Fan’s
fixed point theorem, there exists a fixed point of T .

The next lemma completes the proof.

Lemma 2 There exist ρ0 ∈ (0, 1), ρ1 > 3, and Z > 1 satisfying (R1)-(R3)
in Lemma 1.

Proof. The proof proceeds by three steps. In step 1, I show that there
exists ρ1 > 3 satisfying (R1); in step 2, I show that there exists ρ0 ∈ (0, 1)
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satisfying (R2); in step 3, I show that given (ρ0, ρ1), there exists Z > 1
satisfying (R3). In this proof, I suppress dependence of q(x, y; ρ), l(x, y; ρ),
f(x, y; ρ), g(x, y; ρ), and v(x; ρ, μ̄) on (ρ, μ).
Step 1. Let ρ̃ > 2 satisfy u02(δ) < 1, where u2(δ) = u3(ρ̃) − u3(1), and

(1 + τ)c01(ρ̃) > u03(1). Then let ρ1 > ρ̃+ 1. Fix μ, ρ > ρ1− 1 and z > 1. It is
standard to show g(y, z)− g(y, z− �) ≤ u03(zρ− �ρ)�ρ, ∀ � ∈ (0, z) and y (by
u002 < 0 and u

0
3 ≤ 0 and (16)-(17)). Now I claim f(z, y)−f(z−�, y) ≤ u03(1)�ρ,

∀ � ∈ (0, z− 1) and y. Therefore, u03(1)�ρ ≥ v(z)− v(z− �) for small �. Then
by a = [(1+ τ)z− τ ]ρ > ρ̃ and (1+ τ)c01(ρ̃) > u03(1), v(z)−v(z− �) < c1(a)−
c1(a− (1+ τ)�ρ) for small �, so z /∈ X(ρ, ρ, μ̄) and hence maxX(ρ, ρ, μ̄) ≤ 1.
For the claim, fix x > 1 and y, and it suffices to show f1(x, y) ≤ u03(1)ρ

(f1(x, y) is the derivative of f(., y) at x). Let (κ, ι) = (q(x, y), l(x, y)). Sup-
pose xρ− ιρ < 1. Then by xρ > ρ̃ and u2(κ) > u3(xρ)−u3(xρ− ιρ), κ > δ so
u02(κ) < 1. Then by (16), ι < 0.5x so 0.5xρ < xρ− ιρ < 1 or xρ < 2, which
contradicts ρ̃ > 2. So xρ− ιρ ≥ 1 and (16) holds with equality. Then by the
implicit function theorem (applied to (16) with equality and (17)), q1(x, y)
(the derivative of q(., y) at x) and l1(x, y) (the derivative of l(., y) at x) are
defined, in particular,

q1 =
θu02(κ)u

0
3(yρ+ ιρ)l1 − (1− θ)u03(xρ− ιρ)(1− l1) + (1− θ)u03(xρ)

u02(κ)− (1− θ)[u2(κ) + u3(xρ− ιρ)− u3(xρ)]u002(κ)/u
0
2(κ)

ρ.

So f1(x, y) is defined, in particular, f1 = u02(κ)q1 + u03(xρ − ιρ)(1 − l1)ρ. It
is standard to show l1 ≤ 1 (by u002 < 0 and u03 ≤ 0 and (16)-(17)). Then by
xρ− ιρ ≥ 1, f1(x, y) ≤ u03(1)ρ.
Step 2. Let h = (u2/u

0
2)(u

00
2/u

0
2)(1 − 1/θ). Let M > 0 and Q > 0

satisfy 1 + 1/θ + h(q) < M , ∀ 0 < q ≤ Q. Let ρ̄ ∈ (0, 1) satisfy q̄ =
u3(ρ̄)− u3(0) ≤ Q and u02(q̄)u

0
3(3ρ̄) > max{u03(0), 4M(1 + τ)c01(ρ̄)}. Then let

ρ0 ∈ (0, 0.5ρ̄). Fix μ, ρ ∈ (0, 2ρ0) and z < 1. Notice that f(z+ �, y) > f(z, y)
and g(y, z + �) > g(y, z), ∀ � > 0 and y (see the proof of Lemma 1). Now I
claim M [f(z + �, y) − f(z, y)] > u02(q̄)u

0
3(3ρ̄)�ρ, ∀ � ∈ (0, 1 − z) and y ≤ 2.

Therefore, by μ̄{y : y ≤ 2} ≥ 1/2, 4M [v(z + �) − v(z)] > u02(q̄)u
0
3(3ρ̄)�ρ for

such �. Then by a = [(1 + τ)z − τ ]ρ < ρ̄ and u02(q̄)u
0
3(3ρ̄) > 4M(1 + τ)c01(ρ̄),

v(z + �)− v(z) > c1(a+ �(1 + τ)ρ)− c1(a) for small �, so z /∈ X(ρ, ρ, μ̄) and
hence minX(ρ, ρ, μ̄) ≥ 1.
For the claim, fix x < 1 and y ≤ 2, and it suffices to show Mf1(x, y) >

u02(q̄)u
0
3(3ρ̄)ρ. By u02(q̄)u

0
3(3ρ̄) > u03(0) and ρ < ρ̄, l(x, y) = x so l1(x, y) = 1,

and q(x, y) is the q satisfying (17) when l = x. By the implicit function
theorem, q1(x, y) is defined and so is f1(x, y); in particular, letting (κ, ι) =
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(q(x, y), l(x, y)), q1 and f1 are determined by the formulas given in step 1.
Then by κ < q̄ and l1 = 1, Mf1(x, y) > u02(q̄)u

0
3(3ρ̄)ρ.

Step 3. Given ρ0, let Z > 1 satisfy (1+τ)c01((1+τ)Zρ0−τρ0) > u03(1). Fix
μ, ρ ≥ ρ0 and z > Z. By the argument in step 1, I can show z /∈ X(ρ, ρ, μ̄),
so maxX(ρ, ρ, μ̄) ≤ Z.

Completion of the proof of Proposition 2
The next lemma completes the proof of step 1.

Lemma 3 If either u03(q)q is non decreasing and u003 < 0, or if u
00
3 = 0, then

the following is true when θ = 1. (i) For each τ ≥ τ , there exists a unique
ρ, denoted ρ(τ), satisfying F (ρ, τ) = 0. (ii) ρ(.) : [τ ,∞) → R is strictly
decreasing. (iii) For each τ ≥ τ , the left and right derivatives of ρ(.) at τ
(the right derivative if τ = τ) are defined and negative. (iv) For each τ ≥ τ ,
the derivative of W at ρ = ρ(τ) is W 0(ρ) = τc01(ρ) + 0.5u

0
2(q(ρ))[u

0
3(ρ +

l(ρ)ρ)− u03(ρ)].

Proof. To see the technical issue indicated in the main text, let (ρ, μd)
be a monetary steady state given τ . When c01(0) < u03(0) or τ < 0, it may
be the case that l(ρ) = 1 and (8) holds with equality. Now l0(ρ) need not be
defined, so F1(ρ, τ) need not be defined (this issue does not depend on the
curvature of u3). To deal with it, I first establish some preliminary results
that are organized in five claims.
Claim 1: There exists at most one ρ̂ satisfying

u02(u3(2ρ̂)− u3(ρ̂))u
0
3(2ρ̂) = u03(0). (18)

To see this, first notice that u002 < 0. If u003 = 0, then the result follows
immediately; if u003 < 0, then the result follows from 2u03(2ρ)− u03(ρ) ≥ 0.
Claim 2: If ρ ≤ ρ̂, then l(ρ) = 1. To see this, first notice that l(ρ̂) = 1.

Next let ρ < ρ̂, and suppose l(ρ) < 1 so (8) holds with equality. If u003 = 0,
then this equality contradicts (18); if u003 < 0, then by u3(ρ+ l(ρ)ρ)−u3(ρ) ≤
u3(2ρ̂)− u3(ρ̂), this equality contradicts (18).
Claim 3: If ρ > ρ̂, then l(ρ) < 1 and (8) holds with equality. To see this,

notice that u02(u3(2ρ)− u3(ρ))u
0
3(2ρ) ≥ u03(0) and ρ > ρ̂ contradict (18).

Claim 4: l0(ρ) is defined at ρ 6= ρ̂; also, l0−(ρ̂) (the left derivative of l(.) at
ρ̂) and l0+(ρ̂) (the right derivative of l(.) at ρ̂) are defined. To see this, first by
claim 2, l0(.) is defined over (0, ρ̂], where l0(ρ̂) = l0−(ρ̂). Next by claim 3 and
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the implicit function theorem (applied to (8) with equality), l0(.) is defined
over [ρ̂,∞), where l0(ρ̂) = l+(ρ̂).
Claim 5: For each τ ≥ τ , F1(ρ, τ) is defined and positive at ρ 6= ρ̂;

also, F1−(ρ̂, τ) (the left derivative of F (., τ) at ρ̂) and F1+(ρ̂, τ) (the right
derivative of F (., τ) at ρ̂) are defined and positive. To see this, fix τ . First
by claims 2 and 4, F1(., τ) is defined over (0, ρ̂] and is positive valued, where
F1(ρ̂, τ) = F1−(ρ̂, τ). Next by claims 1, 3 and 4, F1(., τ) is defined over [ρ̂,∞),
where F1(ρ̂, τ) = F1+(ρ̂, τ), and to see F1(ρ, τ) > 0, if l0(ρ) ≥ 0, then directly
differentiate (9) w.r.t. ρ; otherwise, first substitute (8) with equality into (9)
and then differentiate it w.r.t. ρ.
Now part (i) follows from claim 5. Part (ii) follows from claim 5 and

F (ρ(τ), τ) = 0.
For part (iii), first by part (ii), there exists at most one τ̂ satisfying

ρ(τ̂) = ρ̂. Then by claims 2 and 3, l(ρ(τ)) < 1 if τ < τ̂ , and l(ρ(τ)) = 1
if τ ≥ τ̂ . Now by claim 5 and the implicit function theorem (applied to
F (ρ(τ), τ) = 0), ρ0(.) is defined over [τ , τ̂ ], where ρ0(τ̂) = ρ0−(τ̂) (the left
derivative of ρ(.) at τ̂); also, ρ0(.) is defined over [τ̂ ,∞), where ρ0(τ̂) = ρ0+(τ̂)
(the right derivative of ρ(.) at τ̂). In specific, ρ0(τ) = −c01(ρ(τ))/F1(ρ(τ), τ)
at τ 6= τ̂ , ρ0−(τ̂) = −c01(ρ̂)/F1+(ρ̂, τ̂), and ρ0+(τ̂) = −c01(ρ̂)/F1−(ρ̂, τ̂).
For part (iv), because l(ρ) = 1 for ρ ≤ ρ̂ and F (ρ̂, τ̂) = 0, the left

derivative of W at ρ̂ is τ̂ c01(ρ̂) + 0.5u
0
2(q(ρ̂))[u

0
3(2ρ̂) − u03(ρ̂)]. Because (8)

holds with equality for ρ ≥ ρ̂ and F (ρ̂, τ̂) = 0, the right derivative of W at ρ̂
is τ̂ c01(ρ̂)+0.5u

0
2(q(ρ̂))[u

0
3(ρ̂+ l(ρ̂)ρ̂)−u03(ρ̂)]. By l(ρ̂) = 1, the two derivatives

are equal. Evidently, W 0(ρ) is defined at ρ 6= ρ̂ and takes the purported
value.

The next lemma deals with step 2 of the proof.

Lemma 4 There exists some θ̄ < 1 such that the golden rule rate of transfer
is positive if θ > θ̄.

Proof. First, adding θ into the lists of arguments of q(.), l(.), f(.), and
g(.), and denoting a generic (x, y, ρ, θ) by a, we have mappings a 7→ q(a), a 7→
l(a), a 7→ f(a), and a 7→ g(a). By the theorem of maximum, q(.) and l(.) are
continuous at any a = (x, y, ρ, θ) with θ < 1. Now let an = (xn, yn, ρn, θn)→
â = (x̂, ŷ, ρ̂, 1). Let (q̂, l̂) be an arbitrary limit point of {(q(an), l(an))}.
Because (16)-(17) hold when (q, l, a) = (q(an), l(an), an), it follows that (16)-
(17) hold when (q, l, a) = (q̂, l̂, â). Because (q(â), l(â)) is the unique (q, l)
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satisfying (16)-(17) when a = â, it follows that (q̂, l̂) = (q(â), l(â)). Hence
q(.) and l(.) are continuous, and so are f(.) and g(.). Also, adding (θ, τ) into
the list of arguments of v(.), we have mappings (x, ρ, μ, θ, τ) 7→ v(x, ρ, μ̄, θ, τ),
(ρ, μ, θ, τ) 7→ X(ρ, μ̄, θ, τ), and (ρ, μ, θ, τ) 7→ T (ρ, μ, θ, τ) (for T , see (14) and
(15)).
In what follows, let (ρ, μ, θ, τ) stand for the monetary steady state (ρ, μ)

under (θ, τ), and let W (ρ, μ, θ, τ) be the young’s expected lifetime utility
in this steady state. By the results established in step 1, there exists b̃ =
(ρ̃, μ̃, 1, τ̃) with τ̃ > 0 such that W (b̃) > W (b) for any b = (ρ, μ, 1, τ) with
τ ≤ 0.
Suppose θ̄ does not exists. Then we can find the sequences {bn} =

{(ρn, μn, θn, τ̃)} and {b0n} = {(ρ0n, μ0n, θn, τn)} with θn < 1, τn ≤ 0 and
W (bn) ≤ W (b0n) and with (θn, τn) → (1, τ 0) for some τ 0 ≤ 0. Then we
can find some compact A ⊃ {bn, b0n} (refer to the proof of Proposition 1).
By continuity of f and g and by compactness of A, I can show by the exact
argument in the proof of Lemma 1 that T is compact-valued and u.h.c. on
A. This argument also implies W is continuous on A.
By definitions of bn and b0n and T , (ρn, μn) ∈ T (bn) and (ρ0n, μ

0
n) ∈ T (b0n).

Let b̂ = (ρ̂, μ̂, 1, τ̃) be a limit point of {bn}, and let b̂0 = (ρ̂0, μ̂0, 1, τ 0) be a
limit point of {b0n}. Because T is compact-valued and u.h.c., (by passing
to subsequences) we have (ρ̂, μ̂) ∈ T (b̂) and (ρ̂0, μ̂0) ∈ T (b̂0). By the results
established in step 1, (ρ̂, μ̂) is the unique monetary steady state under (1, τ̃),
so b̂ = b̃. Also, (ρ̂0, μ̂0) is the unique monetary steady state under (1, τ 0). Now
continuity of W implies W (b̃) =W (b̂) ≤W (b̂0), a contradiction.

Comparison with the Lagos-Wright model
First, I sketch a version of the LW model. At stage 1 of date t, people

meet in a centralized market, where they can consume and produce. At
stage 2 of date t, people meet in pairs in a decentralized market, where each
person has an equal chance to be a buyer or a seller. The individual stage i
utility from consuming q is ũi(q) and disutility from producing q is c̃i(q). The
discount factor between dates is β ∈ (0, 1) (there is no within-date discount).
The special assumption is c̃1(q) = q. The initial money stock M0 is evenly
distributed among people at the start of date 0. Before the date t pairwise
meetings, each person receives τMt (τ > β − 1) units of money transfer.
The centralized trade is competitive. The surplus from pairwise trade is

split by generalized Nash bargaining in which the buyer’s bargaining power
is θ. A monetary equilibrium under (θ, τ) is a sequence {ρt} such that when
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ρt > 0 is the real balance in the date t centralized market, all people leave the
market with Mt units of money; in particular, in equilibrium, the expected
value for an agent holding zMt+1 (z ≤ 2) units of money at the end of date
t is zβρt+1 + γ for some constant γ.
For comparison, it is convenient to assume that in the OLGmodel, people

can consume in their first stage with the utility function u1 (this does not
affect results in the main text). Let (ui, ci) = (ũi, c̃i), i = 1, 2, and u3 = βc1.
Let {ρt} be a monetary equilibrium under (θ, τ) in the LW model. It

is straightforward to show that {(ρt, μd)} (supp μd = {1}) is a monetary
equilibrium under (θ, τ) in the OLG model. (The key is that given {ρt} the
payoff for a young person holding zMt+1 units of money at the end of date
t is zβρt+1.) Evidently, the prices of money in the centralized market and
the trade outcomes in the decentralized market in these two equilibria are
identical. This is observational equivalence.
In the LW model, let ρ̃(τ) be the real balance in the unique monetary

steady state under (θ, τ), and let Ṽ (τ) be the representative agent’s steady-
state expected discounted utility. Let V (τ) be the young person’s steady-
state expected lifetime in the OLG model. It is straightforward to show
V (τ 2) − V (τ 1) = (1 − β)[Ṽ (τ 2) − Ṽ (τ 1)] + (1 − β)[ρ̃(τ 1) − ρ̃(τ 2)]. Now
suppose in the LW model, M0 is sold by the government to people in the
date 0 centralized market (this does not affect the definition of equilibrium
and observational equivalence). Then V (τ 2)−V (τ 1) = (1−β)[Ṽ (τ 2)−Ṽ (τ 1)],
so Ṽ and V are maximized by the same rate of money transfer.
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