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1 Introduction16

This paper examines the long-run real effects of inflation with heterogeneous agents.17

It is not new that inflation would have redistribution effects by different channels. Our18

paper concerns a physical environment in which an individual earns and spends his19

labor income through a decentralized-trade process; such an environment is realistic20

and, it is of interest because how much the individual can adjust his wealth status21

depends on how much his trading partner is willing to adjust. Also, given wealth22

heterogeneity, it is important to distinguish different sorts of inflation that redistribute23

wealth by different manners; this is an essential point of Wallace (2014). Therefore,24

our research question is how quantitatively a decentralized-trade process may affect25

the influences of different inflationary policies on output, the wealth distribution, and26

welfare. We consider output because it is arguably the most attention-drawing macro27

aggregate, the wealth distribution because monetary policy is related to the growing28

inequality by some public opinion,1 and welfare because a widespread narrative says29

that inflation hurts poor people more than rich.230

Our paper is based on an off-the-shelf model, the familiar model of Trejos and31

Wright (1995) and Shi (1995) with general individual money holdings. Having anony-32

mous agents trade in pairwise meetings, this basic model of the New Monetarist eco-33

nomics provides a solid microfoundation for money as a medium of exchange, in which34

who trades with whom and how the trade is conducted are explicitly described. Pop-35

ulated with heterogeneous agents, the model resembles much of the Bewley model,36

the workhorse model for studying inequality. In a canonical Bewley model (see, e.g.,37

İmrohoroğlu 1992), each agent adjusts his wealth status on a centralized spot market;38

in the Trejos-Wright-Shi model, each agent does so by trading with his partner in a39

pairwise meeting.40

In our basic model, we borrow from Wallace (2014) an abstract program which41

1The opinion seems to reach central bankers; e.g., see Bernanke (2015), Bullard (2014), and
Constâncio (2017).

2As documented by Easterly and Fischer (2001), poor people are more concerned about inflation.
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repeatedly makes a regressive or progressive transfer of money to agents. We select a42

value of the buyer’s weight in surplus-sharing for the parameterized model that gen-43

erates the markup value commonly used in related studies. We find that (a) both44

regressive and progressive transfers stretch the wealth distribution (i.e., increase in-45

equality) with respect to the zero-transfer benchmark; (b) stretching the distribution46

has a significant and positive effect on output, as long as overall incentives to produce47

are maintained; (c) only regressive transfers can maintain overall incentives to pro-48

duce, thus increasing output significantly; and (d) regressive transfers decrease ex ante49

social welfare, while progress transfers may increase it. Finding (b) is in line with a50

key finding by Jin and Zhu (2019) for one-shot transfers in the same model. One-shot51

transfers alter the wealth distribution but barely alter incentives to produce. Repeated52

transfers alter both, and findings (a), (c) and (d) are all related to incentives.53

The key to understanding incentives is the endogenized aversion to risk on wealth54

embodied in the indirect utility function, i.e., the value function, reflecting the individ-55

ual risk on consumption and production induced by risk on wealth. Taking away an56

agent’s wealth more when he is poorer, a regressive transfer increases the individual57

risk as if applying a concave transformation to the value function, a transformation58

that maintains overall incentives to produce; a progressive transfer does the opposite59

and dilutes overall incentives. The progressive transfer paradoxically stretches the dis-60

tribution because of a general-equilibrium effect due to the reduction in the individual61

risk—agents dramatically increase their expenditures. The regressive transfer actually62

discourages agents to spend but the magnitude is much less dramatic, which may be63

understood on the basis that absent any transfer, the individual risk already sufficiently64

restrains spending.65

Replacing decentralized trade with centralized trade on spot markets (as in the66

Bewley model) greatly reduces the individual risk. As such, it much reduces the degree67

by which a transfer alters the distribution, thus reducing the output-increase potential68

(if the output does increase); it also allows a regressive transfer to improve ex ante69

welfare and output at the same time. Compared with centralized trade, decentralized70
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trade amplifies the individual risk at the benchmark mainly through the induced risk71

on production. While the risk-amplifying degree generally decreases as the buyer’s72

surplus-sharing weight goes down, findings (a)-(d) above are valid for a range of the73

buyer’s weights consistent with a wide range of the markup values. In summary, the74

real effects of inflation depend on the underlying policy; for each sort of policy, its75

real effects may differ under decentralized and centralized trade because earning labor76

income through bilateral bargaining can make an individual much more averse to risk77

on wealth than earning labor income from a competitive market. These are the very78

key lessons from our study.79

Plausibly, an inflation policy in reality is hybrid in that it is neither (purely) re-80

gressive nor progressive. To extend our study to hybrid policies, we add government81

bonds to the basic model. When all injected money is used to finance interests on82

bonds, the inflation policy is regressive. Therefore, the government can run a class of83

hybrid policies according to the individual purchasing of bonds. To make a focus, we84

concentrate on a class of hybrid policies that deliver the same ex ante welfare as the85

zero-inflation policy. There are two notable consequences of the interaction between86

the progressive and regressive characteristics of these policies. One is that the progres-87

siveness of a policy increases with inflation, limiting the room for inflation to increase88

output. Another pertains to the scenario that people in a steady state face a potential89

rise in inflation. We find that the poor favor a progressive policy, the rich favor a90

regressive policy, the poor are much more sensitive to which policy is adopted, and a91

hybrid policy can be attractive to society because it better balances the demands from92

the two sides.93

The rest of the paper is organized as follows. We describe the basic model in section94

2 and report the findings of quantitative analysis in sections 3 and 4. The model with95

nominal bonds is studied in section 5. Section 6 discusses the related literature. Section96

7 concludes.97
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2 The basic model98

Time is discrete, dated as t ≥ 0. There is a unit mass of infinitely lived agents and99

a durable and intrinsically useless object, called money. Money is indivisible and,100

without loss of generality, let its smallest unit be 1; the initial money stock is M ; there101

is a finite but arbitrarily large upper bound B on the individual money holdings; and102

the initial distribution of money π0 is public information.103

Each period t comprises two stages, 1 and 2. At stage 1, the government transfers104

money to agents in the form of lotteries; for an agent holding m units of money at the105

start of the period, a lottery is a probability measure on the set {0, ..., B−m} such that106

the measure of x is the probability that the agent receives x units of money from the107

government. Following Wallace (2014), we characterize a transfer policy or, simply, a108

transfer, by a pair of parameters (C0, C) ∈ R×R+: the lottery specified by the transfer109

for the agent holding m has a mean z(m) equal to min{max{0, C0 + C ·m}, B −m}110

and the minimal variance (which is obtained when the support of the lottery is the111

two integers neighboring z(m) if z(m) /∈ Z and is z(m) otherwise). The transfer is112

regressive if C0 < 0 and progressive if C0 > 0; it is helpful to note that the potential113

real effects of the transfer come from the component C0.
3

114

At stage 2, each agent has an equal chance of being a buyer or a seller. Following115

the type realization, each seller is randomly matched with a buyer. In each pairwise116

meeting, the seller can produce a good only consumed by the buyer. The good is117

divisible and perishes at the end of the period. By exerting l units of the labor input,118

each seller can produce l units of goods. A trading outcome in the meeting is a lottery119

on the feasible transfers of goods and money. If the seller exerts l units of the labor120

input, his disutility is121

c (l) = l1+1/η/ (1 + 1/η) , η > 0. (1)

3When money is divisible and B = ∞, the transfer is purely proportional and has no real effect
with C0 = C.
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If the buyer consumes y units of goods, his period utility is122

u (y) =
[
(y + ω)1−σ − ω1−σ] / (1− σ) , σ > 0, (2)

where ω is a small positive number (which keeps the buyer’s reservation value well123

defined). Each agent can observe his meeting partner’s money holdings, and the trading124

outcome in the meeting is determined by the weighted egalitarian solution of Kalai125

(1977),4 in which the buyer’s share of surplus is θ. Without loss of generality, we126

represent a generic trading outcome by the pair (y, µ), meaning that the seller transfers127

y ≥ 0 units of goods and the buyer pays d ∈ {0, . . . ,min(mb, B −ms)} units of money128

with probability µ(d).5129

At the end of date t, each unit of money independently disintegrates with the130

probability δt = 1 −Mt/M
+
t , where Mt and M+

t are the stocks of money before and131

after the stage-1 transfer at period t, respectively; this disintegration turns the money132

stock back to Mt and implies Mt = M , all t.6 Each agent maximizes his expected133

utility with a discount factor β ∈ (0, 1).134

To describe equilibrium conditions at period t, let vt+1(m) be the value for an agent135

holding m units of money at the start of t + 1 and πt(m) be the proportion of agents136

holding m units of money at the start of t. Given the distribution πt, the proportion137

of agents holding m units of money immediately following the stage-1 money transfer138

is139

π̂t (m) =
∑
m′

λt (m,m′) πt (m′) , (3)

where λt (m,m′) is the proportion of agents with m′ units of money receiving m−m′140

4This bargaining protocol is applied to matching models of money in recent studies; see, e.g.,
Aruoba et al. (2007) and Venkateswaran and Wright (2013). Unlike Nash bargaining, it makes the
surplus for an agent increase with his money holdings, implying that agents have no incentive to hide
their money holdings. It also preserves the concavity of value functions.

5Introduced by Berentsen et al. (2002) into models with indivisible money, lotteries convexify the
set of surpluses from trade. Lotteries also mitigate indivisibility. Of course, when money is divisible
and B =∞, neutrality is automatic and the exposition is actually simpler. See Zhu (2005) for a sense
of approximating divisible money by indivisible money.

6The disintegration is introduced by Deviatov and Wallace (2001) to define the individual state by
the ratio of the individual money holdings to the stock of money, as in a divisible-money model.
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units of transferred money that is fully determined by the transfer policy (C0, C) and141

is described in the appendix. Given the value function vt+1, the value function for an142

agent holding m units of money right prior to the disintegration of money at the end143

of period t is144

ṽt (m) = β
∑
m′≤m

(
m

m′

)
(1− δt)m

′
δt
m−m′

vt+1 (m′) , (4)

where δt is the disintegration probability given M+
t =

∑
mπ̂t(m). Given the value145

function ṽt, the trading outcome when a buyer holding mb meets a seller holding ms
146

at stage 2 is147 (
yt
(
mb,ms

)
, µt
(
mb,ms

))
= arg max

(y,µ)
Sbt
(
y, µ,mb

)
(5)

subject to148

θSst (y, µ,ms) = (1− θ)Sbt
(
y, µ,mb

)
, (6)

where149

Sbt
(
y, µ,mb

)
= u (y) +

∑
d

µ (d)
[
ṽt
(
mb − d

)
− ṽt

(
mb
)]

(7)

is the buyer’s surplus from trading (y, µ) and150

Sst (y, µ,ms) = −c (y) +
∑
d

µ (d) [ṽt (ms + d)− ṽt (ms)] (8)

is the seller’s. Given the stage-2 meeting outcomes and the distribution π̂t, the value151

for an agent holding m right prior to the stage-2 meetings is152

v̂t (m) = ṽt (m) + 0.5
∑
m′

π̂t (m′) [Sbt (yt (m,m′) , µt (m,m′) ,m) (9)

+ Sst (yt (m′,m) , µt (m′,m) ,m)];

the proportion of agents holding m right prior to date-t disintegration of money is153

π̃t (m) = 0.5
∑
mb,ms

[
λ̂bt
(
m,mb,ms

)
+ λ̂st

(
m,mb,ms

)]
π̂t
(
mb
)
π̂t (ms) , (10)

where λ̂bt(m,m
b,ms) and λ̂st(m,m

b,ms) are the proportion of buyers with mb and that154

of sellers with ms, respectively, ending up with m after those buyers meeting those155
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sellers that are fully determined by the payment lottery µ(mb,ms) and described in156

the appendix. Finally, the value for an agent holding m at the start of t is157

vt (m) =
∑
m′

λt (m′,m) v̂t (m′) ; (11)

the proportion of agents holding m at the start of t+ 1 is158

πt+1 (m) =
∑
m′≥m

(
m′

m

)
(1− δt)m δtm

′−mπ̃t (m′) . (12)

Notice that (3), (10), and (12) determine the law of motion from the distribution πt to159

πt+1; (4), (9), and (11) determine the recursive relationship between the value functions160

vt and vt+1.161

Definition 1 Given (π0, C0, C), a sequence {vt, πt+1}∞t=0 is an equilibrium if it satisfies162

(3)-(12) all t; a pair (v, π) is a steady state if {vt, πt+1}∞t=0 with vt = v and πt = π all163

t is an equilibrium.164

In an equilibrium {vt, πt+1}∞t=0, the aggregate output at period t is165

Yt = 0.5
∑
mb,ms

π̂t
(
mb
)
π̂t (ms) yt

(
mb,ms

)
, (13)

the average payment is166

Dt =
∑
mb,ms

π̂t
(
mb
)
π̂t (ms) dt

(
mb,ms

)
,

and the average price is167

Pt =
∑
mb,ms

π̂t
(
mb
)
π̂t (ms) pt

(
mb,ms

)
,

where dt(m
b,ms) =

∑
d dµt(d;mb,ms) and pt(m

b,ms) = dt(m
b,ms)/yt(m

b,ms). We168

define169

ϕt+1 =
(
M+

t /M
)
Pt+1/Pt − 1

as the inflation rate. Given the equilibrium, we can back out the average price at170

t+ 1 when there were no disintegration at the end of t, which is (M+
t /M)Pt+1 (so ϕt+1171

agrees with the change of the average price from t to t + 1 absent disintegration at172
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t). Throughout, we remove the time subscript from an object Xt in an equilibrium to173

represent that object in a steady state.174

Our analysis below is quantitative. Except for an exercise in section 5, it mainly in-175

volves steady state comparison. Given a set of policy and non-policy parameter values,176

we compute a steady state (v, π) such that the value function v is strictly increasing177

and concave—a value function is concave if its linear interpolation is concave.7 The178

computational procedure follows Jin and Zhu (2019), details of which are given in the179

appendix. For each set of parameter values experimented, we start from many differ-180

ent initial conditions, but our algorithm always converges to the same steady state.181

Therefore, we refer to that solved steady state as the steady state corresponding to the182

set of parameter values. Because money is indivisible and the upper bound B on the183

individual holdings is finite, we use the solved steady state to construct the Jacobian184

to verify its local stability as in Jin and Zhu (2019).8185

Most of our analysis reports two statistics for a steady state (v, π): the average186

expected discount utility or ex ante (social) welfare187

V =
∑
m

π(m)v(m), (14)

and the indirect risk aversion188

Σ =
∑
m

π (m) ς (m) , (15)

where ς(m) is the relative risk aversion at m derived from a smooth approximation of189

v.190

For most of our analysis, we fix non-policy parameter values and vary policy pa-191

rameter values. Our benchmark policy is the no-transfer zero-inflation policy. For192

non-policy parameter values, we choose a sufficiently large M to mitigate the effects193

7Zhu (2003) establishes existence of such a steady state when θ = 1. The existence result can be
extended to θ sufficiently close to 1, but has not been proved for a general θ.

8Molico (2006) numerically solves the divisible-money setup in footnote 5 with θ = 1. We suspect
that his algorithm can be extended to at least some range of θ < 1. When we align parameter values
with Molico (2006), the results from our indivisible-money setup are almost identical to those reported
by him. See Appendix B for a related discussion on computation.
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of indivisibility of money, and M = 30 serves the purposes well. We choose a suffi-194

ciently large B to mitigate the effect of bounding one’s nominal wealth; it turns out195

that B = 150 is good enough for most exercises, but we may use a higher value when196

necessary. We let the annual discount rate be 4%, so that β = 1/(1 + 0.04/F ) when197

agents meet F rounds in the decentralized market per year. Unless otherwise stated,198

the results presented in the paper use (σ, η, ω) = (1, 1, 10−4) (see (1) and (2)) and199

F = 4. The values of σ = 1 and η are standard in the literature. The main purpose of200

ω is to keep the buyer’s reservation value (in (7)) well defined; we choose a small value201

of ω to largely maintain the CRRA property of function u. We discuss different values202

of (σ, η, ω, F ) at the end of section 3.203

As in Jin and Zhu (2019), we follow Lagos and Wright (2005) in determining the204

value of the buyer’s surplus θ by markup. In a steady state (v, π), let κ(mb,ms) =205 ∑
d µ(d;mb,ms)[v(ms+d)−v(ms)]; we define κ(mb,ms)/c(y(mb,ms)) as the (expected)206

markup in a meeting between a buyer with mb and a seller with ms;9 so the average207

markup at period t is208 ∑
mb,ms

π̂
(
mb
)
π̂ (ms)κ

(
mb,ms

)
/c
(
y
(
mb,ms

))
. (16)

We choose 1.39 as the target of the average markup in the benchmark steady state,209

a target that is at the high end of markup values estimated by empirical studies; this210

target is suggested by Lagos et al. (2017) and also adopted by Jin and Zhu (2019).211

Given (σ, η, ω) = (1, 1, 10−4) and F = 4, the average markup reaches 1.39 at θ = 0.98212

in the benchmark steady state. We use θ = 0.98 when a policy deviates from the213

benchmark. An alternative is to identify a different value of θ for which the average214

markup meets the same target for a different policy. We discuss this alternative at the215

end of section 3 and more on the different values of θ in section 4.216

9The seller’s surplus can be written as (κ/ι) · ι− ψ(ι), where ι = c(y(mb,ms)) and ψ(ι) = ι; that
is, the seller exchanges his present utility loss ι due to production with his future utility gain κ due
to the monetary payment under the price κ/ι. Treating the seller’s surplus as his profit and ψ(ι) as
his total cost, κ/ι is the conventional price-marginal cost markup.
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C0 C ϕ ∆Y ∆Yπ D Σ Gini ∆V

benchmark 0 0 0 0 0 0.21 1.479 0.117 0

regressive

-0.01 0.01 1% 4.94% 4.32% 0.17 1.564 0.183 -1.40%

-0.02 0.02 2% 11.53% 10.88% 0.15 1.575 0.232 -3.56%

-0.03 0.03 3% 18.97% 20.66% 0.14 1.562 0.277 -6.48%

progressive

0.3 0 1% -2.76% 2.38% 0.76 0.783 0.163 0.27%

0.6 0 2% -4.59% 5.60% 1.34 0.658 0.205 0.23%

0.9 0 3% -6.40% 9.20% 1.92 0.599 0.240 0.15%

Table 1: Steady states under various transfer policies.

3 Real effects of inflation: regressive transfer vs217

progressive transfer218

In this section, we illustrate by examples that regressive transfers have different real219

effects from progressive transfers. In the examples, we use three inflation targets, 1%,220

2%, and 3%. For regressive transfers, we fix C0/C = −1 and set C0 = −0.01, −0.02,221

and −0.03, corresponding to ϕ = 1%, 2%, and 3%, respectively. For progressive222

transfers, we fix C = 0 and set C0 = 0.3, 0.6, and 0.9, corresponding to ϕ = 1%, 2%,223

and 3%, respectively. As noted above, the component C0 is the force that drives the224

real effects of a transfer. For a regressive transfer, C > 0 is necessary to increase the225

stock of money, and a constant C0/C keeps the real-effect driving force proportional to226

ϕ among regressive transfers; progressive transfers are lump sum transfers, and they227

are assigned higher values of |C0| than regressive transfers in order to have real effects228

comparable in magnitude to those of regressive transfers.10229

Table 1 reports the main statistics obtained from the benchmark steady state and230

steady states under the above transfers. Here and below, ∆X = X ′/X − 1 represents231

a relative change of the object X from the zero-inflation benchmark to another steady232

state, where X and X ′ are the object’s values in the benchmark and the other steady233

state, respectively. Thus, ∆Y is the relative change in aggregate output (∆Yπ is part234

10Keeping C0/C = −1 among regressive transfers is not crucial, but −1 matches an object that
indicates the regressive nature of inflation-financed bonds, i.e., −g(m) in (26); also, see footnote 13
for numbers when the two sorts of transfers share the same values of |C0|.
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of ∆Y defined below), and ∆V is the relative change in ex ante welfare (see (14)). In235

the table, the Gini of a steady state is the Gini coefficient implied by the steady-state236

distribution π.237

In the rest of this section, we use the indirect risk aversion Σ (see (15)) to under-238

stand the real effects of the two sorts of transfers presented in the table. The indirect239

risk aversion Σ measures the endogenized individual aversion to risk on wealth. An240

agent is averse to risk on wealth ultimately because it induces a risk on the agent’s241

consumption and production. Here we treat Σ as an indirect indicator of the induced242

risk on consumption and production experienced by agents, referred to as the individual243

risk ; section 4 provides a more detailed analysis of this risk.244

A regressive transfer increases the individual risk as it offers more to an agent245

when he is rich than when he is poor, acting on the benchmark value function as if246

applying a concave transformation; a progressive transfer does the opposite. The value247

of Σ is 1.479 at the benchmark, indicating a substantial individual risk which permits248

a risk-reducing force to reshape the benchmark value function more evidently than a249

risk-enhancing force. Indeed, Σ moves up to 1.564 for (C,C0) = (0.01,−0.01) and down250

to 0.783 for (C,C0) = (0, 0.3).11This can also be seen from Figure 1, which displays251

steady-state value functions and distributions for (C,C0) = (0.01,−0.01) (ϕ = 1%),252

(C,C0) = (0, 0.3) (ϕ = 1%), and (C,C0) = (0, 0) (ϕ = 0); the figure does not display253

the value functions over a small neighborhood of zero in which the increments of the254

value functions for (C,C0) = (0.01,−0.01) and (C,C0) = (0, 0.3) are close to 400.255

For the wealth distribution, a transfer has an assignment effect—it disperses the256

distribution if C0 < 0 and squeezes it if C0 > 0; it also has a general-equilibrium expen-257

diture effect—it disperses the distribution if agents tend to spend more and squeezes it258

if less. A progressive transfer encourages agents to increase their payments by reducing259

11By definition, both the change in the value function and the change in the distribution caused
by a transfer contribute to the change in the indirect risk aversion. But for each steady state, the
standard deviation of ς(m) is no greater than 0.11. On a separate note, a transfer can have a general-
equilibrium effect on the value function through its influence on the distribution, but we find that this
effect is negligible.
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Figure 1: Steady-state value functions and distributions under (C,C0) = (0, 0) (bench-
mark), (C,C0) = (0.01,−0.01) (regressive transfer), and (C,C0) = (0, 0.3) (progressive
transfer), respectively.

the individual risk; a regressive transfer does the opposite. The average payment D is260

0.21 at the benchmark, moving up to 0.76 for (C,C0) = (0, 0.3) and down to 0.17 for261

(C,C0) = (0.01,−0.01). A dramatic change in payments due to a progressive transfer262

may be attributed to a great reduction in the individual risk, and it easily allows the263

expenditure effect to be the dominant factor. A far more limited change in payments264

due to a regressive transfer may be because payments are already at a low level at265

the benchmark, rendering the dominant role to the assignment effect. As such, both266

transfers in Figure 1 spread the benchmark distribution.267

How a transfer reshapes the benchmark value function and distribution helps to268

explain its effect on aggregate output. By definition,269

∆Y = 0.5
∑
mb,ms

[
π̂′
(
mb
)
π̂′ (ms) y′

(
mb,ms

)
− π̂

(
mb
)
π̂ (ms) y

(
mb,ms

)]
/Y.

Let the redistribution effect of the transfer on aggregate output be defined by270

∆Yπ = 0.5
∑
mb,ms

[
π̂′
(
mb
)
π̂′ (ms)− π̂

(
mb
)
π̂ (ms)

]
y
(
mb,ms

)
/Y,

which contributes to ∆Y solely by reshaping the distribution (although π̂ is not the271

same as π, the two distributions are altered by the transfer similarly). In Table 1,272

regressive and progressive transfers all have positive and significant redistribution ef-273
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fects. Why? In the benchmark steady state, y(mb,ms+1)+y(mb,ms−1)−2y(mb,ms)274

and 2y(mb,ms)− y(mb + 1,ms) + y(mb− 1,ms) are positive but the former can signif-275

icantly exceed the latter (see Figure 4). Now, imagine redistributing wealth between276

two agents with m so that one has m+ 1 and the other has m− 1 at stage 1 of a date.277

This decreases output if both agents become buyers at stage 2 and increases it if both278

become sellers; but the net effect is positive. Thus, as noted by Jin and Zhu (2019,279

p. 1337), stretching the distribution reshuffles proportions of meetings with different280

meeting outputs in a way that leads to a higher aggregate output, if overall incentives281

to produce are not affected.282

Repeated transfers do affect incentives. The part in ∆Y complementary to ∆Yπ,283

i.e.,284

∆Yy = 0.5
∑
mb,ms

π̂′
(
mb
)
π̂′ (ms)

[
y′
(
mb,ms

)
− y

(
mb,ms

)]
/Y,

is the weighted change in incentives, with weights assigned by the distribution π̂′.12285

Conventional wisdom is that adding more money dilutes incentives to produce. This286

is the case for a progressive transfer. Indeed, by its way of reshaping the value func-287

tion, the transfer lowers the incremental values over most money holdings, i.e., lowers288

v(m + 1) − v(m) for most m (how much one unit of money can induce a seller with289

m to produce depends on v(m+ 1)− v(m) rather than v(m+ 1)). It is not surprising290

that the progressive transfer in Figure 1 has ∆Yy dominating ∆Yπ; moreover, a larger291

C0 undercuts incentives further, leading to a more negative ∆Y . A regressive trans-292

fer, however, may maintain and even further enhance incentives because its way of293

reshaping the value function largely maintains and even raises the incremental values294

of money; with the ratio of C0 to C being fixed, inflation and ∆Y both increase as the295

risk-enhancing force |C0| increases.296

How each transfer reshapes the benchmark value function and distribution is suffi-297

12Recall that the change in π̂ affects the value function ṽ by affecting the disintegration probability.
So strictly speaking, the changes in v and π̂ contribute to the change in the meeting output. However,
the change in v is the dominant factor because the change in π̂ mainly shifts the entire function ṽ
down, while the change in v affects the incremental values of ṽ.
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Figure 2: Selected percentile ratios of the wealth distribution under different inflation
rates generated by regressive or progressive transfers.

cient to explain the change in ex ante welfare. Alternatively, one may think that the298

substantial individual risk at the benchmark is not desirable so that a regressive trans-299

fer reduces welfare, while a progressive transfer can improve it (at least for inflation in300

some range).301

The Gini values tell that the spread of wealth is responsive to inflation. Figure302

2 presents three different ratios of percentiles of the wealth distribution, where “a-b303

percentile ratio” is the ratio between wealth levels at the ath and the bth percentiles.304

The pattern in Figure 2 fits well with a key feature observed from the data: wealth305

becomes more concentrated at the very top.13306

The main findings presented so far are summarized as follows.307

Result 1 A regressive transfer induces a positive redistribution effect on output and308

maintains overall incentives to produce. A progressive transfer may induce a positive309

redistribution effect but it undercuts overall incentives. Only a regressive transfer can310

increase output significantly. A regressive transfer reduces ex ante welfare while a pro-311

gressive transfer may improve it. Both sorts of transfers make wealth more concentrated312

at the very top.313

13When the values of C0 in progressive transfers are 0.01, 0.02, and 0.03, the corresponding val-
ues of (∆Y,∆V,Gini) are (−0.04%, 0.05%, 0.119), (−0.08%, 0.09, 0.122), and (−0.11%, 0.12%, 0.123),
respectively.
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The Table-1 exercise uses the baseline values of the meeting frequency F , the risk314

aversion coefficient σ in u, the labor supply elasticity η in c, and the constant term ω315

in u. We run experiments by varying one parameter at a time for the robustness check.316

When F increases from 1 to 365, Σ varies narrowly between 1.50 and 1.47. When ω317

increases from 10−6 to 10−2, Σ decreases from 1.66 to 1.19. When η increases from 0.25318

to 4.0, Σ decreases from 1.84 to 1.28. When σ increases from 0.5 to 1.5, Σ increases319

from 0.81 to 1.90. The changes in Σ are intuitive: one is more averse to risk on wealth320

if he is more averse to risk on consumption, more averse to risk on production, or321

has a larger ω to self-insure; his aversion should not have much to do with F . While322

details vary, the patterns in Table 1 remain valid in these experiments; Table 4 in323

Appendix C reports the statistics for selected parameter values. In particular, we324

find no counterexamples to Result 1 except for a sufficiently small η. After all, our325

explanation above for these results relies on two properties of the model: (i) there326

is a substantial individual risk at the benchmark; and (ii) the individual risk can be327

significantly reduced by a progressive transfer. The exception due to a small η is328

that a progressive transfer squeezes the distribution (its assignment effect becomes the329

dominant factor). To reconcile the exception with the above explanation, note that330

when buyers spend more, sellers should produce more in equilibrium. Thus, though331

leading to a larger Σ, a smaller η may impose a more severe constraint on more332

production and result in a smaller expenditure effect. Of course, when the distribution333

is squeezed, wealth may be less concentrated at the top.14334

In the Table-1 exercise, we also fix the buyer’s surplus weight θ at 0.98. Alter-335

natively, we may identify a different value of θ by which the average markup meets336

the markup target for a different policy. As it turns out, the different value of θ is337

quite close to 0.98 (e.g., if ϕ = 3% then it is 0.988 and 0.982 for the regressive and338

progressive transfers, respectively); but, as anticipated, a small change in θ does not339

14Even when η is small, a regressive transfer still maintains a strong redistribution effect. One may
relate this to the finding in Jin and Zhu (2019): a one-shot regressive transfer cannot sustain a strong
and positive output effect when η becomes small because it exerts a much weakened dispersion force
on the distribution.
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affect the numbers in Table 1 much. The effects due to a large change in θ are shown340

in section 4.341

4 Role of decentralized trade342

To illustrate how decentralized trade contributes to the findings in section 3, now we343

replace decentralized trade in the basic model with centralized trade as follows. At stage344

2 of each date t, agents trade in a centralized market where they take the price of money345

φt as given. A trading outcome for an agent carrying m into the market is (y, µ): if the346

agent is a buyer, he receives y units of goods from the market and pays to the market347

d ∈ {0, . . . ,m} units of money with probability µ(d); if he is a seller, he surrenders y348

units of goods to the market and receives from the market d ∈ {0, . . . , B −m} units349

of money with probability µ(d); and the mean of the distribution µ is y/φt. All other350

aspects of the basic model are unchanged.351

Given the constraint of φt imposed on trading outcomes, equilibrium conditions at352

period t are again described by the value function vt+1 and the distribution πt. As353

above, πt and (C,C0) fully determine the distribution π̂t; for an agent carrying m into354

the market, the surplus Sbt (y, µ,m) from a trading outcome (y, µ) when he is a buyer355

and the surplus Sst (y, µ,m) when he is a seller are fully determined by vt+1 and π̂t.356

The agent’s trading outcome is357

(yat (m) , µat (.;m)) = arg max
(y,µ)

Sat (y, µ,m) , (17)

s.t. yat (m) = φt
∑
d

dµat (d;m) , a ∈ {b, s}.

Market clearing requires358 ∑
m

π̂t (m)
∑
d

dµbt (d;m) =
∑
m

π̂t (m)
∑
d

dµst (d;m) . (18)

Given (π0, C0, C), a sequence {vt, πt+1, φt}∞t=0 is an equilibrium under centralized359

trade if it satisfies the recursive relationship between the value functions vt and vt+1, the360

law of motion from the distribution πt to πt+1, and the market clearing condition (18),361
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C0 C ϕ ∆Y ∆Yπ D Σ Gini ∆V

benchmark 0 0 0 0 0 4.98 0.382 0.267 0

regressive

-0.01 0.01 1% 0.17% -0.003% 4.93 0.381 0.268 0.003%

-0.02 0.02 2% 0.33% -0.002% 4.87 0.379 0.268 0.009%

-0.03 0.03 3% 0.49% 0.001% 4.82 0.378 0.268 0.015%

progressive

0.3 0 1% -3.29% -0.12% 6.71 0.428 0.285 -0.32%

0.6 0 2% -5.86% -0.23% 8.15 0.440 0.303 -0.56%

0.9 0 3% -8.03% -0.38% 9.56 0.421 0.323 -0.77%

Table 2: Steady states under various transfer policies: centralized trade.

all t; a tuple (v, π, φ) is a steady state if {vt, πt+1, φt}∞t=0 with (vt, πt+1, φt) = (v, π, φ) all362

t is an equilibrium. Details of equilibrium conditions are given in the appendix. Now363

in an equilibrium, the aggregate output at period t is Yt = 0.5
∑

m π̂t (m) yst (m) and364

the average payment is Dt =
∑

m π̂t (m)
∑

d dµ
b
t (d;m). Table 2 reports the (steady-365

state) statistics under centralized trade for the same values of (C,C0) used in Table 1.366

Again, we appeal to the individual risk to understand the real effects of the two sorts367

of transfers presented in the table.368

The value of Σ is 0.382 at the benchmark, indicating a much mild individual risk.369

The mild individual risk means that the benchmark value function is much flatter than370

its counterpart in Figure 1, constraining the room for a risk-changing force to reshape371

the benchmark value function. This can be seen in Figure 3, which displays the steady-372

state value functions and distributions when (C,C0) = (0.01,−0.01), (C,C0) = (0, 0.3),373

and (C,C0) = (0, 0) under centralized trade. The value function when (C,C0) =374

(0.01,−0.01) closely follows the benchmark value function. Left to the mean holdings375

M , the value function when (C,C0) = (0, 0.3) moves up from the benchmark by a more376

limited degree than its counterpart in Figure 1, indicating that the insurance benefit to377

the poor agents of the transfer is much weakened. One may conclude that a regressive378

transfer at least maintains the overall incentive to produce while a progressive transfer379

does not.15380

With the mild individual risk at the benchmark, agents tend to spend much more381

15One may also noteΣ = 0.381 when (C,C0) = (0.01,−0.01) andΣ = 0.428 when (C,C0) = (0, 0.3),
telling that Σ is an approximate reference for the global curvature of a function.
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Figure 3: Steady-state value functions and distributions under (C,C0) = (0, 0) (bench-
mark), (C,C0) = (0.01,−0.01) (regressive transfer), and (C,C0) = (0, 0.3) (progressive
transfer), respectively: centralized trade.

(D = 4.98). This explains why distributions in Figure 3 are more dispersed than382

their counterparts in Figure 1. Given that the average payments are already high,383

there is little room for the progressive transfer to generate the expenditure effect on384

the distribution that may dominate the assignment effect. However, there may be385

some room for the regressive transfer to generate the expenditure effect that may386

somewhat offset the assignment effect. This explains why in Figure 3, the distribution387

is squeezed (relative to the benchmark) by the progressive transfer, shifted to the388

right by the regressive transfer, and is reshaped much less by either transfer than is its389

counterpart in Figure 1. One may conclude that a regressive transfer has an ambiguous390

and rather small redistribution effect, while a progressive transfer has a negative and391

not large redistribution effect; now ∆Y = 0.5
∑

m[π̂′(m)ys′(m) − π̂(m)ys(m)]/Y and392

the redistribution effect ∆Yπ = 0.5
∑

m [π̂′ (m)− π̂ (m)] ys (m) /Y .393

In summary, under centralized trade, the positive output-inflation correlation for394

regressive transfers is weakened because the redistribution effects are weakened; the395

negative output-inflation correlation for progressive transfers is strengthened because396

the redistribution effects become negative. And, because both sorts of transfers have397

a weakened influence on the distribution, the Gini is not much responsive to inflation.398

Moreover, given the mild individual risk at the benchmark, a progressive transfer re-399
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Figure 4: Present consumption and production as a function of m.

duces ex ante welfare because its insuring benefit is limited and actually dominated by400

the loss in aggregate output; a regressive transfer may be welfare-improving because401

of the gain in aggregate output.402

Result 2 Under centralized trade, there is a much mild individual risk at the bench-403

mark, which is consistent with the real effects of each transfer that differ from those404

under decentralized trade.405

We continue to explore what may be the channel for decentralized trade to amplify406

the individual risk at the benchmark. The individual risk measured by Σ refers to407

the individual risk on consumption and production, induced by a risk on wealth of an408

agent. To analyze this risk, recall that m→ yb(m) and m→ ys(m) (see (17)) define the409

present consumption and the present production under centralized trade as functions410

of an individual agent’s money holdings, respectively, and that m→ ybn(m) ≡ y(m,n)411

and m → ysn(m) ≡ y(n,m) (see (5)) define those functions under decentralized trade412

conditional on the meeting partner’s holdings n. Let wb(m) = u(yb(m)) and ws(m) =413

−c(ys(m)) under centralized trade; let wa(m) =
∑

n π(n)wan(m) under decentralized414

trade, where a ∈ {b, s}, wbn(m) = u(ybn(m)), and wsn(m) = −c(ysn(m)). Let γ(m,w) be415

the relative risk aversion of w = wa at m (based on a smooth approximation of w) and416

let Γ(w)=
∑

m π(m)γ(m,w). Then γ(m,wa) measures how much an agent holding m417
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is averse to the risk on the present consumption (if a = b) or production (if a = s)418

induced by a small shock to his wealth and, then, Γ(wa) tells on average how much419

an agent is averse to that risk. At the benchmark, Γ(wb) = 1.25 and Γ(ws) = 1.35420

under centralized trade; Γ(wb) = 1.11 and Γ(ws) = 2.53 under decentralized trade421

and
∣∣Γ(wbn)− 1.11

∣∣ and |Γ(wsn)− 2.53| are smaller than 0.001 for n between 0.5M and422

1.5M (the mass of agents with n in this range represents 99% of the population).423

For an alternative interpretation of Γ(wa), think of an agent behind the veil of424

ignorance—he has no money but knows that the economy is in the benchmark steady425

state, he is about to receive money by the distribution π before his current type is426

realized, and his wealth is to be hit by a small shock after he receives the money.427

Suppose the current calendar date is zero, and denote by $t(m) the probability that428

he holds m units of money before date-t trade. Focus on decentralized trade. The429

transition matrix between $t and $t+1 is fully determined by π and µ(., .) (see (5)).430

In the absence of the date-0 shock, $0 = π, implying that $t = π all t > 0; therefore,431

behind the veil of ignorance, the agent perceives that at date t ≥ 0 and with probability432

π(m), he consumes ybn(m) and produces ysn(m) (conditional on the meeting partner’s433

holdings n). Because of the date-0 shock, $0 6= π. As π has full support (found by434

computation), the transition matrix has the properties that $t converges to π and that435

$t always stays within any given distance to π if the date-0 shock is sufficiently small.436

Numerical experiments indicate that in general the movement from $t to π is smooth:437

if $t(m) ≷ π(m) then $t(m) ≷ $t+1(m) ≷ π(m). The smooth movement allows $t438

at t ≥ 1 to be approximated by an outcome of the following hypothetical scenario:439

with probability π(m), the agent holds m at the start of t and then there is a small440

shock to his wealth. The agent, therefore, perceives behind the veil of ignorance that,441

as his money holdings stochastically vary around m, his consumption varies around442

ybn(m) and production around ysn(m). For centralized trade, the analogue holds. So443

Γ(wa) measures how much the agent behind the veil of ignorance is averse to the risk444

on consumption (if a = b) or production (if a = s) in each future date induced by445

the date-0 shock and, thus, it is treated as a direct indicator of the individual risk on446
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consumption or production (not only the present consumption or production).447

But why does decentralized trade amplify the individual risk mainly by way of448

the individual risk on production? Figure 4 displays functions yb, ybM , ys, and ysM (the449

shapes of ybM and ysM are representative of those of ybn and ysn for n 6= M). Some intuition450

may be helpful to understand the shapes of these functions. Trade being centralized or451

not, an agent accumulates wealth to partially insure himself against the fundamental452

risk of the model, i.e., the idiosyncratic shock that determines his type at each period;453

specifically, he produces as a seller to insure his consumption as a buyer. Now think of454

that a hypothetical shock causes the agent to win or lose one unit of money by equal455

chance at stage 1. Losing money at stage 1, the agent adjusts his wealth upward with456

respect to the certainty case, i.e., the case without the hypothetical shock, at stage 2457

by spending less as a buyer and earning more as a seller than in the certainty case;458

winning money, he adjusts downward by doing the opposite. For insurance purposes,459

the agent would be urgent to let the adjusting-up degree exceed the adjusting-down460

degree. This urgency translates into convexity of ys and ysn, and concavity of yb and461

ybn. In the absence of competition, the agent’s urgency to increase earnings after losing462

may be exploited by his meeting partner, making ysn more convex than ys; likewise, his463

urgency to reduce spending after losing may give himself some advantage, making ybn464

less concave than yb.16465

So far, we set the buyer’s weight θ of surplus sharing at 0.98. There ought to be466

some dependence of Σ on θ (if θ = 0 then Σ = Γ(wb) = Γ(ws) = 0, as money becomes467

valueless). Now we vary θ from 1 to 0.35 (our algorithm does not converge after θ falls468

somewhere below 0.35). Figure 5 displays the corresponding benchmark steady-state469

values of Γ(wb), Γ(ws), and Σ together with the output changes due to the transfers470

with (C,C0) = (0.01,−0.01) and (C,C0) = (0, 0.3); the figure also draws a cutoff value471

θ̂ = 0.575 such that ex ante welfare can be improved by some progressive transfer472

16Functions yb, ybn, ys, and ysn are shaped by many general-equilibrium forces. As such, we cannot
prove the intuition even though it may be helpful. In fact, as is clear in Figure 4, yb is not globally
concave and ys is not globally convex.

22



0.40.50.60.70.80.91

Buyer's share of surplus 

0.5

1

1.5

2

2.5

R
is

k
 a

v
er

si
o
n
 (

 
, 

 )

-20%

-10%

0%  

10% 

O
u
tp

u
t 

ch
an

g
e 

(
Y

 )

 (w
b
)

 (w
s
)

Y
reg

Y
prog

Figure 5: Left axis: Σ, Γ(wb), and Γ(ws) at benchmark under different θ; right axis:
output changes (∆Y ) due to 1% regressive and 1% progressive transfers, under different
θ.

(regressive transfer, resp.) when θ > θ̂ (θ < θ̂, resp.). In the figure, Σ moves up as θ473

moves down from unity over a small range; outside this range, Σ moves down with θ.474

Given the trend of Σ, the trend of the output change of each transfer and the presence475

of the cutoff point θ̂ are consistent with our explanation in section 3.476

In Figure 5, Γ(ws) closely traces Σ. The trend of Γ(ws) conforms well with the477

abovementioned intuition: the agent’s urgency to adjust earnings as a seller is more478

easily exploited when his meeting partner has more bargaining power. We attribute479

the exception over a small range of θ close to unity to the fact that there is no effective480

two-sided bargaining at θ = 1, allowing two-sided bargaining alone to be a significant481

factor influencing the individual risks for both sides as θ slightly departs from unity.482

In the figure, Γ(wb) is more flattened than is Σ over a wide range of θ, but there is483

an apparent upward trend of Γ(wb) after θ decreases further from 0.5. Over the entire484

range, the individual risk on production contributes much more to the individual risk485

than does the individual risk on consumption. As anticipated, the average benchmark486
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markup is decreasing in θ: it is 1 when θ = 1, moves up to 2.11 when θ = 0.95, and487

further to 7.14 when θ = 0.7.488

Result 3 For a range of θ consistent with a very wide range of markup values starting489

from unity, decentralized trade amplifies the individual risk through the labor income490

earning channel—bilateral bargaining amplifies the individual risk on production, and491

Result 1 remains valid.492

We conduct a robustness check for the impact of θ on the individual risks, output493

change, and welfare change by varying σ and η. The basic patterns in Figure 5 are494

maintained. Table 5 in Appendix C reports the statistics for selected parameter values.495

To conclude this section, we provide a brief comparison with Molico (2006), who496

studies the same model with divisible money for θ = 1 (see footnote 8). When θ ap-497

proaches 1 from 0.98, we find that a progressive transfer with a sufficiently small C0498

under baseline (F, ω, σ, η) slightly increases output and ex ante welfare. This is con-499

sistent with what Molico (2006) reports. Molico (2006) also reports that a progressive500

transfer squeezes the distribution with sufficient small C0. This is consistent with our501

finding for small η. Actually, Molico’s disutility function quickly becomes much more502

convex than ours when meeting output moves away from the static efficient level y∗503

(u′(y∗) = c′(y∗)) to the right, which, as noted in Jin and Zhu (2019, section 6), prevents504

a strong and positive redistribution effect from each sort of transfer.505

5 The model with nominal bonds506

Here we add government nominal bonds to the section-2 model for two related pur-507

poses. First, it demonstrates that conduction of regressive transfers does not require508

the government to monitor the individual’s money holdings. In fact, the regressive509

nature of financing nominal bonds by inflation has been noted by Wallace (2014).510

Second, inflation in reality may be hybrid in that it is neither purely regressive nor511

purely progressive, and we intend to extend our study to such a policy. With bonds,512
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the government can run a class of hybrid policies according to the individual’s bond513

holdings.514

Now at stage 1 of period t, the government issues nominal bonds on a competitive515

market; each unit of bonds automatically turns into one unit of money at the end of516

period t. Each agent chooses a probability measure µ̂ (a lottery) defined on the set517

Ξ = {ζ = (ζ1, ζ2) ∈ Z+ × Z+ : 1 ≤ ζ1 + ζ2 ≤ B} that satisfies518 ∑
ζ=(ζ1,ζ2)

µ̂ (ζ) ·
[
ζ1 + ζ2 (1 + it)

−1] ≤ m, (19)

where m is the amount of money carried by the agent into the market, it is the nominal519

interest rate at t (i.e., (1+it)
−1 is the price of bonds) set by the government who stands520

to meet any demand on bonds, and µ̂(ζ) is the probability that the agent leaves the521

bond market with the portfolio ζ = (ζ1, ζ2) consisting of ζ1 units of money and ζ2 units522

of bonds. After the bond market is closed, the government transfers money to agents523

in the form of lotteries as in section 2. What is new here is that how much an agent524

receives depends on his bond holdings instead of his money holdings. A transfer policy525

is represented by some K ≥ 0: if the lottery chosen by an agent on the bond market526

is realized as some ζ = (ζ1, ζ2), then the transfer policy assigns to the agent a lottery527

µ̃(.; ζ) with a mean equal to min{K(1 + ζ2)
−1, B − ζ1 − ζ2} and the minimal variance.528

A transfer policy is active if K > 0 and inactive if K = 0.529

At stage 2, agents are matched in pairs as in the section-2 model. In each meeting,530

each agent can observe his meeting partner’s portfolio, but bonds are illiquid and money531

is the unique payment method. After the meeting, bonds mature and the money stock532

is533

M+
t = Mt + Lt

[
1− (1 + it)

−1]+ K̃t,

where Lt is the stock of bonds and K̃t is the sum of the transfer. The interest payments534

Lt[1− (1+ it)
−1] are financed by inflation. Analogous to the section-2 model, each unit535

of money disintegrates with the probability that restores the nominal stock back to536

Mt = M at the end of t.537
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The equilibrium conditions are described by a sequence {vt, π̂t, πt+1}∞t=0, where vt538

and πt are the same as in the section-2 model and π̂t is the distribution of portfolios539

right before pairwise meetings at period t. (We need π̂t as a construct independent540

from (vt, πt) to deal with that the individual portfolio choice is endogenous.) Now the541

value for an agent holding the portfolio ζ at the end of pairwise meetings is542

ṽt (ζ) = β
∑

m′≤ζ1+ζ2

(
ζ1 + ζ2
m′

)
(1− δt)m

′
δt
ζ1+ζ2−m′

vt+1 (m′) , (20)

where δt is the disintegration probability given by M+
t =

∑
ζ(ζ1 + ζ2)π̂(ζ); the trading543

outcome (yt(ζ
b, ζs), µt(ζ

b, ζs)) when a buyer holding ζb meets a seller holding ζs at544

stage 2 is determined by (5) with ζb substituting for mb and ζs substituting for ms;545

the value for an agent holding ζ right before the stage-2 meetings is546

v̂t (ζ) = ṽt (ζ) + 0.5
∑
ζ′

π̂t (ζ ′)
[
Sbt (yt (ζ, ζ ′) , µt (ζ, ζ ′) , ζ) + Sst (yt (ζ ′, ζ) , µt (ζ ′, ζ) , ζ)

]
;

(21)

and the proportion of agents holding ζ right before date-t disintegration of money is547

π̃t (ζ) = 0.5
∑
ζ′

[
λ̂bt
(
ζ, ζb, ζs

)
+ λ̂st

(
ζ, ζb, ζs

)]
π̂t
(
ζb
)
π̂t (ζs) , (22)

where λ̂bt(ζ, ζ
b, ζs) and λ̂st(ζ, ζ

b, ζs) are analogous to λ̂bt(m,m
b,ms) and λ̂st(m,m

b,ms)548

in (10). The portfolio choice problem for an agent holding m can be expressed as549

vt(m) = max
µ̂

∑
ζ=(ζ1,ζ2)

µ̂ (ζ)

[∑
z

µ̃ (z; ζ) v̂t (ζ1 + z, ζ2)

]
. (23)

subject to (19). Let µ̂t(.;m) be the µ̂ that solves the problem (23). Then the proportion550

of agents holding ζ prior to pairwise meetings is551

π̂t(ζ) =
∑
ζ′

[
µ̃ (ζ1 − ζ ′1, ζ ′)

∑
m

µ̂t(ζ
′;m)πt (m)

]
. (24)

The proportion of agents holding m at the start of t+ 1 is552

πt+1 (m) =
∑

ζ1+ζ2≥m

(
ζ1 + ζ2
m

)
(1− δt)m δtζ1+ζ2−mπ̃t (ζ) . (25)

Definition 2 Given π0, K, and {it}∞t=0, a sequence {vt, π̂t, πt+1}∞t=0 is an equilibrium553
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i (annual) 1% 2% 4% 8% 10%

ϕ (annual) 0.97% 1.93% 3.87% 7.73% 9.67%

∆Y 1.00% 2.13% 4.75% 11.06% 14.53%

i− ϕ 0.03% 0.07% 0.13% 0.27% 0.33%

Gini 0.135 0.152 0.181 0.230 0.250

∆V −0.27% −0.58% −1.34% −3.39% −4.68%

Table 3: Real effects of inflation-financed bonds.

if it satisfies (20)-(25) all t. If it = i all t, a tuple (v, π̂, π) is a steady state if554

{vt, π̂t, πt+1}∞t=0 with (vt, π̂t, πt+1) = (v, π̂, π) all t is an equilibrium.555

The quantitative analysis here follows the same procedure and adopts the same556

parameter values as in section 2. The benchmark policy is the one with no transfer557

and zero interest.558

Inactive transfer policy (K = 0)559

With K = 0, inflation is all driven by interest payments, and thus inflation increases560

as the nominal interest rate increases. Table 3 displays inflation, the change in output561

(with respect to the benchmark), the real interest rate, the Gini, and the change in ex562

ante welfare for each of five selected values of the nominal interest rate. In the table,563

the output-inflation correlation resembles that in Table 1 for regressive transfers (note564

that a period is a quarter, so annual nominal interest and annual inflation are 4i and565

4ϕ, respectively); moreover, as the regressive transfers in Table 1, inflation reduces ex566

ante welfare and the wealth Ginis are quite responsive to inflation.567

The statistics in the two tables are similar because financing nominal bonds by568

inflation is regressive. To see this, notice that the expected interest payments for an569

agent who enters the bond market with m units of money are570

[m− g (m)] i = −g (m) i+ im. (26)

where g(m) is the amount of money implied by the agent’s portfolio choice. If g(m)/m571

decreases in m, bonds serve as a regressive transfer. While g(m) (weakly) increases in572
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m, it has a narrow range. Recall that the average spending at the benchmark is far573

less than unity. So when i is positive, one chooses to carry one unit of money into574

stage 2 unless he has no money (m = 0) or is very rich;17 as it turns out, more than575

99% of agents choose to carry one. Applying g(m) = 1 to (26), raising i is equivalent576

to raising C and keeping C0/C = −1 in the section-2 model.577

Table 3 also shows a violation of the Fisher equation; that is, inflation rises less578

than one-for-one with the nominal interest rate. Given K = 0, the newly injected579

money ϕM within a period is all used to finance the interest payments iL/(1 + i),580

i.e., (ϕ − i)M = i[L/(1 + i) − M ]. If inflation rises on a one-for-one basis, then581

M = L/(1 + i), meaning that all agents should spend all money on bonds to maintain582

the Fisher equation, which is clearly impossible. This violation of the Fisher equation583

can be an equilibrium in our model because no equilibrium condition in the model584

forces the real interest rate to be a constant.18585

Welfare-neutral active policy586

When i > 0, there can be many hybrid policies resulting from different values of K.587

As a reference, we choose a value of K for a given i > 0, denoted K(i), such that588

the transfer is just progressive enough to offset the regressive nature of bonds. i.e.,589

the corresponding steady state delivers the same ex ante welfare as the benchmark590

steady state. The pair (i,K(i)) constitutes a welfare-neutral active policy. Figure591

6a displays the output-inflation correlation when i rises in the welfare-neutral active592

policies. Along the path of inflation in Figure 6, Ginis for wealth range from 0.147 to593

0.233, similar to those in Table 3. The correlation pattern fits well with the empirical594

finding of Bullard and Keating (1995); that is, inflation mildly expands output over a595

17When the annual nominal interest rate is 2%, one carries 2 if 134 ≥ m > 76 and 3 if m > 134.
Although the integer property of g(m) is a consequence of indivisibility, that g(m)/m decreases in m
should hold with divisible money.

18For comparison, consider the Lagos-Wright model (2005) with government bonds. The real interest
rate there must be equal to the inverse of the discount factor. If inflation is entirely driven by financing
bonds, there is no monetary (steady state) equilibrium when the nominal interest rate is positive but
sufficiently close to zero.
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Figure 6: Output-inflation correlations and value functions associated with welfare-
neutral active policies.

limited range and the expanding effect gradually phases out beyond this range.596

To understand this pattern, we display in Figure 6b value functions with annual597

inflation at 0, 1%, and 3%. We make the following observation: in partial equilibrium,598

a rise in i strengthens the regressive feature of the policy but, in general equilibrium,599

the rise in K to maintain ex ante welfare at the benchmark level effectively leads600

the entire policy to perform as a more progressive policy than the one with lower i.601

So when i becomes larger, the value function becomes more flattened and, consistent602

with our analysis in section 3, the distribution becomes more dispersed. In short,603

the progressiveness of a welfare-neutral policy increases in i. Consequently, when i is604

small, a low degree of progressiveness allows the redistribution effect ∆Yπ to dominate605

the incentive effect ∆Yy, leaving some room for the regressive aspect of the policy to606

increase output; this dominance is reversed by a high degree of progressiveness as i607

grows.608

Individual responses to potential rises in inflation609

In a world where people already have different levels of wealth, how may one respond610

to a potential rise in inflation according to wealth status? In particular, is there a611
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basis for the whole of society to consider a welfare-neutral active policy? To shed612

some light on this issue, we take our analysis beyond steady-state comparisons. To613

describe our approach, let the economy already reach some steady state (v, π̂, π) under614

some prevailing policy. Suppose that a policy alternative to the prevailing policy is615

implemented at the start of the present date, and let (v′, π̂′, π′) be the steady state616

corresponding to the alternative policy. Reset the calendar time so that the present617

date is date 0 and let {v′t, π̂′t, π′t+1}∞t=0 denote the transitional equilibrium connecting618

the two steady states, i.e., it starts from the initial distribution π′0 = π and converges619

to (v′, π̂′, π′) as t goes to ∞. For an agent holding m units of nominal wealth at the620

start of date 0, v(m) is his (life-time) welfare measured at date 0 if there is no policy621

change and v′0(m) is his welfare if the alternative policy is adopted. We measure the622

agent’s response to the potential policy change by623

ρ (m) ≡ v′0 (m) /v (m)− 1, (27)

the ex-post welfare change for the agent if the alternative policy is adopted.624

We run an exercise with (v, π̂, π) being the benchmark steady state and with three625

alternative policies. The first policy is regressive. The second is the welfare-neutral626

active policy which has the same i as the regressive policy. The third policy is pro-627

gressive: a lump-sum policy that yields the highest ex ante welfare among all lump628

sum policies. The values of (K, i) for these policies are (0, 3%/4), (0.089, 3%/4), and629

(0.174, 0), respectively. Figure 7 displays three ρ functions. The figure has three im-630

portant patterns representative of other policy parameter values. First, no inflation631

policy wins a majority support. Second, agents in the middle of π are not sensitive632

to which policy is adopted; moving away from the middle, agents become increasingly633

sensitive; but the change in individual sensitivity is more pronounced as moving to the634

poor end. Third, poor agents disfavor a regressive policy much more than rich agents635

favor the policy; and poor agents favor a progressive or a welfare-neutral active policy636

more than rich agents disfavoring it.637

Two lessons emerge. First, it may be too simple to only count the number of people638
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who favor a policy while ignoring the degree by which a certain group of people favor639

or disfavor the policy. In particular, the demand for insurance by the poor in society640

may be a dominant factor in social choice, even though this demand is disfavored by641

the rich. Second, a welfare-neutral policy may be attractive because it better balances642

the demands from the two sides.643

Result 4 The two sides of society may respond much differently to different inflation644

policies while the poor may be much more concerned about which inflation policy is645

adopted than the rich. A welfare-neutral policy may better balance the demands from646

the two sides.647

6 Related literature648

While it has never been a mainstream proposition, that inflation may be expansionary649

can be at least dated back to Hume,650
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...[I]t is of no manner of consequence, with regard to the domestic hap-651

piness of a state, whether money be in a greater or less quantity. The good652

policy of the magistrate consists only in keeping it, if possible, still increas-653

ing; because, by that means he keeps alive a spirit of industry in the nation.654

[Hume (1752, p. 288)]655

Hume, however, did not spell out why increasing the quantity of money may keep alive a656

spirit of industry. In fact, inflation tends to reduce output because it undercuts people’s657

incentives to obtain money in most familiar models. Nonetheless there are models in658

line with Hume’s proposition. In the presence of capital, the negative incentive effect659

of inflation on output may be dominated by the Tobin effect; see Orphanides and660

Solow (1990) for a survey. Moreover, inflation may be expansionary when agents have661

nonstandard preferences; e.g., Graham and Snower (2008). Furthermore, it is well662

known that with nominal rigidity, inflation can raise output as in the New Keynesian663

model; see, e.g., Devereux and Yetman (2002) and Levin and Yun (2007). In our model,664

the price is flexible and preferences are standard and, what kind of output-inflation665

correlation would emerge depends on how inflation redistributes wealth among agents.666

It is not a mainstream proposition that monetary policy in general and inflation in667

specific would play a major role in shaping inequality in the long run, either. Nonethe-668

less, three stylized facts in the U.S. economy seem to draw a fair amount of attention669

from the literature: poor people conduct larger proportions of transactions by cash;670

poor people hold larger proportions of wealth in cash; and only a fraction of households671

hold financial accounts. Erosa and Ventura (2002) formulate the first heterogeneous-672

agent model to endogenize the first two facts by assuming that some agents are more673

productive than others and that paying by some non-cash method is more costly than674

paying by cash; inflation in their model is effectively a regressive consumption tax.675

Motivated by the third fact, Williamson (2008) assumes that some agents cannot re-676

ceive money transfers from the government. As such, inequality grows with inflation.677

In our model, all transactions are paid by money, access to the financial market and678
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the money-transfer program is free, while inflation can easily be regressive to shift the679

distribution by a large degree when agents are ex ante identical.680

Models with heterogeneous agents are employed to address welfare implications of681

inflation. For example, İmrohoroğlu (1992), Camera and Chien (2014), and Dressler682

(2011) quantify ex ante welfare costs of inflation due to lump sum transfers in different683

versions of the Bewley model; Molico (2006) does so in the Trejos-Wright-Shi model684

with θ = 1; and Chiu and Molico (2010, 2011) do so in a model that mixes the Trejos-685

Wright-Shi model with the Lagos-Wright model (it is costly for agents to participate in686

the competitive market after they trade in pairs). Complementary to their works, our687

paper emphasizes that ex ante welfare costs may critically depend on the underlying688

inflation policy and the market structure. Moreover, our paper quantifies ex post689

welfare costs for an individual agent according to his wealth status if inflation comes690

as an unanticipated shock.691

Some models with heterogeneous agents are designed to obtain analytical tractabil-692

ity by making certain assumptions on preferences and the market structure. For exam-693

ple, Boel and Camera (2009) introduce two types of agents who permanently differ in694

productivity into a version of the Lagos-Wright model; Menzio et al. (2013) separate695

the centralized labor market from the directed-search goods market; Rocheteau et al.696

(2018) formulate a continuous-time version of the Bewley model in which agents con-697

tinuously consume and produce with a quasi-linear preference while being randomly698

hit by a preference shock for lumpy consumption; Rocheteau et al. (2021) study a699

version of the model of Berentsen et al. (2011) in which agents inelastically supply700

labor when meeting firms; and Lippi et al. (2015) consider a model in which two types701

of agents randomly switch their types (à la Levine 1991). Those models are quite702

useful in yielding certain insights. For example, Rocheteau et al. (2018) demonstrate703

that regressive policies dominate progressive policies when agents have sufficient ca-704

pacity to self insure; Rocheteau et al. (2021) show that transferring money to firms705

and worker have different implications on the long-run Phillips curve; and Lippi et706

al. (2015) feature an optimal monetary policy that depends on aggregate states. As707
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is well known, the Trejos-Wright-Shi model is not tractable; we use it because of its708

distinct feature that agents earn their labor income (with elastic labor supply) entirely709

by decentralized trade (through bilateral bargaining). This feature seems to drive the710

quantitative implications of our model.711

Recently, monetary economics explores the influence of heterogeneity on the perfor-712

mance of the aspects of policy responding to economic cycles. The dominant framework713

of those works is the heterogeneous-agent New Keynesian model, a model that blends714

the basic ingredients of the standard New Keynesian model with the Bewley model; see715

Kaplan and Violante (2018) for a comprehensive review. Insistence on nominal rigidity716

reflects the dominant view of the profession; that is, a change in a nominal object such717

as the stock of money or the nominal interest rate would be irrelevant absent of sticky718

prices. Different from this strand of the New-Keynesian literature, our paper focuses719

on the long run aspects of policy. Our paper demonstrates that with decentralized720

trade, a change in a nominal object can be rather significant in the long run absent of721

any imposed nominal rigidity, a very similar message delivered by Jin and Zhu (2019)722

in a context for the short-run change.723

7 Concluding remarks724

This paper presents two findings regarding the long-run real effects of inflation. First,725

the real effects of inflation depend on the nature of inflation policy. Second, the real726

effects also depend on the market structure; in particular, decentralized trade (earning727

and spending labor income by bilateral bargaining) can have much different implica-728

tions from centralized trade.729

Individual risk is central to our explanation of these two findings. Three important730

factors may affect the individual risk but are absent in our study. The first is persistence731

in the idiosyncratic shock. We may let the productivity of an agent as a seller be732

determined by an idiosyncratic shock and the shock follows, say, an AR(1) process.733

Such a setting should further increase the individual risk. The second is a social734
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safety net. Within the current setting, we may interpret ω in the utility function735

(see (2)) as a universal-consumption subsidy and choose the level of ω equal to a pre-736

chosen fraction ω̄ of the average consumption in the zero-inflation steady state. If737

ω̄ = 25%, then ω = 0.22 and the risk aversion Σ is 0.84, sufficient to maintain main738

patterns of the inflation influence on output and the distribution. The third factor is739

intrinsic heterogeneity. We may add to the model a small class of agents who are more740

productive (as sellers) or more patient or both and, hence, richer overall. Likely, the741

addition of this rich class would increase the individual risk for agents in the non-rich742

class because the non-rich class only occupies a share of wealth to insure against their743

risks. This conjecture, of course, requires some careful check.744

Finally, one may replace bilateral bargaining in the Trejos-Wright-Shi model with745

directed search. In this alternative environment of decentralized trade, buyers and746

sellers choose to visit submarkets indexed by price. It is for the future research to747

sort out whether the endogenized risks on consumption and production can still be748

sufficiently amplified.749

Appendix A: Complete description of equilibria750

A.1 The basic model751

Under a transfer policy (C,C0) in section 2, the expected amount of money received752

by an agent holding m units of money is x(m) = min{max{0, C0 + C · m}, B − m}.753

Let bx(m)c be the largest integer no greater than x(m); let dx(m)e denote the smallest754

integer no less than x(m) but no greater than B − m. If dx(m)e 6= bx(m)c, then755

λt (m′,m) is defined by756

λ (m+ bx(m)c ,m) = dx(m)e − x(m),

λ (m+ dx(m)e ,m) = m− bx(m)c ;

and if dx(m)e = bx(m)c, then λt (m′,m) is defined by

λ (m+ bx(m)c ,m) = 1.
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In a stage-2 meeting between a buyer with mb and a seller with ms, the equilibrium757

trading outcome µ(mb,ms) implies that758

λ̂bt(m
b − d,mb,ms) = µ(d;mb,ms),

λ̂st(m
s + d,mb,ms) = µ(d;mb,ms),

where d ∈ {0, 1, ...,min{B −ms,mb}}.759

A.2 The model with centralized trade760

Consider the version of the model with a centralized market in stage-2. Given the761

trading outcome (yat (m) , µat (.;m)) (determined by (17)) and the distribution prior to762

the market π̂t, the value for an agent holding m right prior to stage-2 market is763

v̂t (m) = ṽt (m)+0.5
∑
m′

π̂t (m′)
[
Sbt
(
ybt (m,m′) , µbt (m,m′) ,m

)
+ Sst (yst (m′,m) , µst (m′,m) ,m)

]
;

(28)
the proportion of agents holding m right prior to date-t disintegration of money is764

π̃t (m) = 0.5
∑
m′

[
λ̂bt (m,m′) + λ̂st (m,m′)

]
π̂t (m′) , (29)

where λ̂bt(m,m
′) and λ̂st(m,m

′) are the proportion of buyers with m′ and the proportion765

of sellers with m′, respectively, leaving the market with m; they are given by766

λ̂bt(m
b − db,mb) = µb(db;mb),

λ̂st(m
s + ds,ms) = µs(ds;ms),

where db ∈
{

0, 1, ...mb
}

and ds ∈ {0, 1, ..., B −ms}.767

Given π0, a sequence {vt, πt+1, φt}∞t=0 is an equilibrium if it satisfies (3), (4), (11), (12),768

(18), (28), and (29), all t. A tuple (v, π, φ) is a steady state if {vt, πt+1, φt}∞t=0 with769

(vt, πt+1, φt) = (v, π, φ) all t is an equilibrium.770

A.3 The model with nominal bonds771

Under a hybrid policy with active transfer (K > 0), the expected amount of money772

transfer received by an agent with portfolio ζ is x̃(ζ) = min{K(1 + ζ2)
−1, B− ζ1− ζ2}.773

Let bx̃(ζ)c denote the largest integer no greater than x̃(ζ); let dx̃(ζ)e denote the smallest774

integer no less than x̃(ζ) but no greater than B − ζ1 − ζ2. If dx̃(ζ)e 6= bx̃(ζ)c, then775

µ̃(.; ζ) is defined by776

µ̃ (bx̃(ζ)c , ζ) = dx̃(ζ)e − x̃(ζ),

µ̃ (dx̃(ζ)e , ζ) = x̃(ζ)− bx̃(ζ)c ;
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and if dx̃(ζ)e = bx̃(ζ)c, then µ̃(.; ζ) is defined by

µ̃ (bx̃(ζ)c , ζ) = 1.

Appendix B: Computation777

Here we begin with the algorithm to compute steady states of the basic models.778

1. Begin with an initial guess (π0, v0), where π0 is consistent with the total money779

stock M , and v0 is strictly concave.780

2. Given (πi, vi), we follow the sub-steps below to update (πi+1, vi+1) and obtain781

(π̂i+1, π̃i+1, v̂i+1, ṽi+1).782

(a) Given πi, we obtain π̂i+1 by (3) and δi+1 by δi+1 = 1−M/ (
∑
mπ̂i+1(m)).783

(b) Given δi+1 and vi, ṽi+1 is determined by (4).784

(c) Given π̂i+1 and ṽi+1, we solve the problem in (5) and obtain v̂i+1 from (9)785

and π̃i+1 from (10).786

(d) Given π̃i+1, v̂i+1, and δi+1 computed in step (a), we obtain vi+1 from (11)787

and πi+1 from (12).788

3. Repeat step 2 until min {‖vi+1 − vi‖ , ‖πi+1 − πi‖} < ε, where ε = 10−8.789

4. Denote by (π∗, v∗) the final result.19790

The steady-state algorithm for the model in section 3 with centralized market is similar.791

The only difference is in step 2, where we have to solve problems in (17) and (18) for792

all mb and ms, respectively; we also have to find an equilibrium price φi that clears793

the centralized market. The steady-state algorithm for the model in section 4 with794

nominal bonds can also be adapted in a straightforward manner.795

19The accompanying FORTRAN 90 codes for the algorithms are available upon request. For θ =
0.98, applying parallel computing on a server with a 48-thread CPU takes less than half a minute to
converge; on a laptop with an Intel i7 CPU without parallel computing, it takes approximately 30
minutes. Convergence is fastest for θ = 1: 4 minutes on the laptop. A small θ can demand much
more time when it requires that B be significantly above 150 to mitigate the effect of bounding one’s
nominal wealth. For θ = 0.5, B = 900 and convergence takes 2 hours on the server.
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benchmark regressive transfer progressive transfer

Σ ∆Y ∆Yπ ∆V ∆Gini ∆Y ∆Yπ ∆V ∆Gini

baseline 1.48 4.94% 4.32% −1.40% 0.07 −2.76% 2.38% 0.27% 0.05

σ
0.5 0.81 0.60% 0.37% −0.74% 0.03 −3.36% 1.43% −0.24% 0.08

1.5 1.90 8.25% 5.53% −7.96% 0.00 −39.89% 10.80% 11.64% 0.02

η
0.25 1.84 3.08% 3.05% −4.33% 0.11 −2.22% −0.76% 1.49% −0.04

4 1.28 6.80% 5.67% −1.12% 0.05 −4.19% 5.59% 0.20% 0.06

ω
10−6 1.66 10.04% 9.34% −2.11% 0.09 −4.07% 2.05% 0.44% 0.03

10−2 1.19 1.90% 1.62% −1.07% 0.05 −2.31% 1.96% 0.17% 0.06

F
1 1.50 4.83% 2.64% −1.05% 0.03 −8.67% 12.85% 0.01% 0.13

365 1.47 5.01% 4.43% −1.42% 0.07 −0.36% 0.78% 0.35% 0.06

Table 4: Effects of regressive and progressive transfer under various (σ, η, ω, F ).

As noted in the main text, Molico (2006) numerically solves the divisible-money setup796

in footnote 5 with θ = 1. An algorithm to solve the divisible-money setup needs (a) a797

B′ <∞ to approximate B =∞; (b) a finite grid to approximate divisible money; and798

(c) in each iteration, a large number of samples from a given distribution to approximate799

that distribution. These approximations are saved in our model.800

Appendix C: Robustness Check801

802

For Table 4, recall that the baseline value of (σ, η, ω, F ) is (1, 1, 10−4, 4) and that803

we change one parameter value at a time. In the table, the regressive transfer has804

(C,C0) = (0.01,−0.01) (ϕ = 1%) and the progressive transfer has (C,C0) = (0, 0.3)805

(ϕ = 1%) when we vary σ, η, and ω. When varying F , we adjust (C,C0) for each806

transfer proportionally to F to keep the quarterly inflation rate at 1%. In the table,807

a progressive transfer undercuts ex ante welfare (∆V = −0.24%) with σ = 0.5. This808

does not contradict the fact that progressive transfer improves welfare at low inflation;809

indeed, ∆V = 0.07% when ϕ= 0.1% (i.e., (C,C0) = (0, 0.03)).810

811

For Table 5, recall that the baseline value of (σ, η, ω, F ) is (1, 1, 10−4, 4) and we change812

either σ or η.813
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θ = 1 θ = 0.8

Σ
regressive progressive

Σ
regressive progressive

∆Y ∆V ∆Y ∆V ∆Y ∆V ∆Y ∆V

baseline 1.08 1.41% −0.46% −2.13% 0.03% 1.22 5.27% −3.11% −16.08% 5.24%

σ
0.5 0.79 0.55% −0.72% −3.22% −0.21% 0.69 0.55% −0.37% −3.68% −0.82%

1.5 1.40 16.34% −0.41% −1.84% 0.01% 1.79 4.02% −7.34% −49.52% 17.25%

η
0.25 1.10 0.10% −0.28% −0.81% 0.01% 1.33 0.49% −4.46% −7.27% 10.38%

4 1.07 3.68% −0.65% −3.57% 0.05% 1.13 10.34% −2.21% −14.73% 1.63%

θ = 0.6 θ = 0.4

Σ
regressive progressive

Σ
regressive progressive

∆Y ∆V ∆Y ∆V ∆Y ∆V ∆Y ∆V

baseline 0.94 1.76% −0.38% −19.37% −2.72% 0.51 0.68% 0.23% −15.08% −7.39%

σ
0.5 0.45 0.49% 0.07% −10.05% −4.08% 0.37 0.65% 0.28% −15.52% −8.92%

1.5 1.56 4.41% −4.78% −60.44% 9.76% 0.56 0.65% 0.21% −14.60% −6.66%

η
0.25 1.13 0.66% −1.14% −15.68% −0.33% 0.53 0.49% 0.22% −12.35% −6.87%

4 0.79 1.86% −0.14% −20.57% −3.36% 0.48 0.81% 0.24% −17.73% −7.45%

Table 5: Impact of varying θ under various (σ, η).
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