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Abstract

We study the risk-sharing role of multiple outside assets in a two-sector

Lagos-Wright economy with aggregate shocks. Using a mechanism-design ap-

proach, we show how a planner can implement the best allocation achievable

with memory (perfect monitoring) by employing a state-contingent asset-supply

policy and a trading protocol that endogenizes no asset-substitution. The op-

timal policy requires active management of relative asset prices under large

shocks or impatience. If the two assets are the currencies of two countries, then

the optimum is neither fixed nor floating exchange rates.
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1 Introduction

A central question in monetary economics is how arrangements involving multiple

assets can improve welfare. In an international context, this includes exchange-rate

policy; in a one-country context, this includes interest-rate policy. This question

is often addressed in models where the distinct functions of the assets are imposed

exogenously (see, e.g., Lucas [6] and Lucas and Stokey [7]). In this paper, the rationale

for multiple assets arises from their essential role in facilitating risk sharing. Our work

has two distinct features. First, we use a background model in which money has a role

as a substitute for perfect monitoring or memory (see Townsend [11] and Kocherlakota

[4]). Second, following Zhu and Wallace [17], we achieve no asset-substitution in a

way that is consistent with having trade in each meeting between people in the model

be in the meeting-specific core, a desirable feature that does not hold in models with

country-specific or sector-specific cash-in-advance constraints and competitive trade.

The specific model we use is a two-sector version of the Lagos-Wright [5] model with

sector-specific aggregate shocks.1

The model is an infinite-horizon model with two stages at each discrete date.

Stage-1 is a centralized meeting with a linear good; stage-2 has people meeting in

pairs with general costs of production and utilities of consuming. In our version,

there are two stage-2 sectors that are distinguished by sector-specific productivity

and taste shocks in the pairwise meetings. The two outside assets are either two

currencies (when each sector is a country) or currency and a one-period discount

government bond (when the two sectors are part of a single country). In each case, a

planner supplies assets in the centralized meeting of the model at a state-dependent

relative price of the two assets—the nominal exchange rate in the first case, the

nominal interest rate in the second case. The model lends itself to the study of an ex

ante representative-agent notion of welfare. When there is sufficient impatience for

given shocks or when the shocks are large enough for a given degree of impatience, the

best policy has roles for both assets and is state-dependent. In particular, when the

two assets are currencies, the best policy is neither fixed nor floating exchange rates;

when the two assets are currency and bonds, the best policy is a state-dependent

1Aliprantis et al. [1] show that money is not essential in the Lagos-Wright [5] model. However,
Zhu [16] shows that their argument is not robust to a commodity-money refinement—attaching
an arbitrarily small utility payoff to money, one that in the limit plays no role in the monetary
equilibrium.
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discount (or premium) on the bonds.

It turns out that we are able to support the outcome that is best if there were

perfect monitoring—memory. Notably, even with memory, the presence of the linear

stage-1 good is crucial for attaining the best allocation. We achieve that optimum

when there is no memory by having a particular active policy at stage-1 and a par-

ticular stage-2 trading protocol.

The active stage-1 policy must achieve the correct real value of assets in the

centralized meeting at each state—the value that equals the amount of utility that

memory can transfer at that state. Given no asset-substitution, it must also achieve

the correct split of that real value between the two assets and the correct (expected)

rate of return of each asset. The split is about risk sharing. Each asset’s rate of

return and its real value determine the asset’s (expected) future value, a value that

is used to compensate the current production cost in the sector’s stage-2 meetings.

The (across-state) splits and the planner’s asset-supply policy together determine the

rates of return. Our main contribution is showing that there exist optimal splits and

asset-supply policy that support the full-memory optimum and that the asset-supply

policy has the features mentioned above.

The stage-2 trading protocol is a generalization of that in Hu et al. [2]. In a

one-asset and one-sector version of the model without shocks, they show that there

is a protocol which, by rewarding buyers who hold a sufficient quantity of money,

achieves the outcome that would be best in a version of the model with memory.

Our protocol is similar except that it also uses the idea in Zhu and Wallace [17] that

endogenizes a favored asset for each sector.2

Our results depend on the quasi-linear preference feature of the Lagos-Wright [5]

model, the feature that implies that the distribution of wealth entering a date is not

a state variable of the model. In the conclusion, we say why we expect similar results

for policy to hold in less extreme versions of the model, versions in which the linear

good appears only periodically or not at all.

2Rocheteau and Nosal [9] use the protocol of Zhu and Wallace [17] in a two-country non-stochastic
version of the model to get a determinate exchange rate. Hu and Rocheteau [3] use versions of the
protocols in Zhu and Wallace [17] and Hu et al. [2] to avoid capital over-accumulation in a version
of the Lagos-Wright [5] model. The same class of protocols (from Zhu and Wallace [17] and Hu et
al. [2]) is used in Zhu [15], which applies the present model to compare fixed and flexible exchange
rates.
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2 The environment

Time is discrete, dated as t ≥ 0. There is a [0,2] continuum of infinitely-lived agents.

The economy has two sectors, 1 and 2. At the start of period-0, agents are randomly

assigned to a sector and keep the sector affiliation forever. Each period has two

stages. Everyone is together at stage-1, while stage-2 has two-person meetings in

each sector. Stage-2 has one produced and perishable good in each sector. At stage-

1, each agent can produce and consume a good, whose payoff in terms of utility is

equal to the amount consumed or produced (positive for consumption, negative for

production). This is the critical feature of the Lagos-Wright [5] model that makes the

model tractable. (Notice that there are no aggregate gains from trade at stage-1.)

At the beginning of stage-1 of each period, two shocks are realized. Each agent

gets an idiosyncratic shock which makes them either a stage-2 producer or a consumer

for one date with equal probability.3 And there is a publicly observed aggregate shock

which determines stage-2 preferences and technologies. There are I aggregate states.

The transition of states follows a Markov chain with a transition matrix π = (πij),

which has a unique invariant distribution α = (α1, ..., αI). Let i ∈ {1, ..., I} be the

current (aggregate) state. Then in sector-h, h ∈ {1, 2}, the utility of a consumer

who consumes q ≥ 0 is Uh(q, θih) and the disutility of a producer who produces q

is Ch(q, ρih), where θih, ρih > 0, Uh(0, θih) = Ch(0, ρih) = 0, Uhq ≡ ∂Uh/∂q > 0,

∂Uhq/∂q < 0, Chq ≡ ∂Ch/∂q > 0, ∂Chq/∂q ≥ 0, βUhq(0, θih) > Chq(0, ρih), and

β ∈ (0, 1) is the discount factor. Each agent maximizes expected discounted utility

with period utility given by the sum of stage-1 utility and stage-2 utility.

There are two outside nominal assets. We consider two settings: (a) the two assets

are two currencies; and (b) asset-1 is currency and asset-2 is a nominal one-period

discount government bond. Most of the analysis is common to both settings.

3 Mechanisms and equilibrium

There is a planner whose objective is to maximize ex ante welfare, each agent’s ex-

pected discounted utility prior to the realization of any shock at period-0. Because

of linearity of stage-1 goods, ex ante welfare only depends on stage-2 output. In

3In earlier versions, there was a second idiosyncratic shock which determined whether a consumer
visited the non-home sector at stage-2 for one period. It turned out that such a shock plays no role.
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particular, W (y) =
∑

(i,h) αi[Uh(yih, θih) − Ch(yih, ρih)] is the welfare value of an al-

location y = {(yi1, yi2) : 1 ≤ i ≤ I}, where yih is output in a stage-2 meeting in

sector-h at state-i. The planner is subject to the constraint that all trades be in the

meeting-specific core.

Because all agents meet together at stage-1, the relevant core is degenerate and

the planner’s choice effectively comes down to asset-supply policy. Such policy could

either be described in terms of quantities or in terms of prices. We choose prices

so that the planner stands ready to exchange one asset for the other at a (state-

dependent) price. This price is the nominal exchange rate in setting (a) and the

nominal interest rate in setting (b). Agents trade the linear good for each asset in

a respective Shapley-Shubik [10] trading post; they can trade one asset for the other

with the planner before and after trading at the two posts. The realized price in each

post is common knowledge. The individual bids at each post and the individual asset

trades are private information. There is no explicit taxation.4

Because agents meet in pairs at stage-2, the core for each pairwise meeting is

non-degenerate (provided that the consumer in a meeting holds valued assets) and

the planner’s choice is a trading protocol that assigns a trading outcome from the

pairwise core for each meeting. The game form for a pairwise meeting has two rounds

of moves. In the first round, the two agents say yes or no simultaneously. If both

say yes, then the meeting moves to the second round; otherwise, the meeting ends

up with autarky. In the second round, the consumer proposes a trading outcome and

then the producer says yes or no. The game ends up with the proposed outcome if the

producer says yes and with the outcome assigned by the trading protocol otherwise.5

Each agent can observe his meeting partner’s portfolio, and the actions taken in the

meeting are only observed by the two agents in the meeting.

A mechanism is therefore represented by a stage-1 asset-supply policy and a stage-

2 trading protocol. A mechanism is a Markov mechanism if dependence of the stage-1

policy and the stage-2 trading protocol on history is restricted to the current state. To

be precise, let i be the current state. The planner stands ready to exchange ξi units of

asset-1 for one unit of asset-2 so that ξ = (ξ1, ..., ξI) represents a Markov asset-supply

policy. For a stage-2 trading protocol, consider a meeting in sector-h at state-i. En-

4As established in Hu et al. [2], lump-sum taxation, of the sort that would support the Friedman
rule, is not feasible in the model.

5This game form is used in Hu et al. [2] and Zhu [14].
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tering the meeting, the consumer carries a real portfolio x = (x1, x2) of assets and the

producer carries x′ = (x′
1, x

′
2), where xk and x′

k are values of asset-k, k ∈ {1, 2}, in
terms of the stage-1 good in the current stage-1 market. Then the trading outcome as-

signed by the trading protocol is µih(x, x
′) = (yih(x, x

′), pih1(x, x
′), pih2(x, x

′)), where

yih(x, x
′) is the producer’s output (and the consumer’s consumption) and pihk(x, x

′)

is the consumer’s payment in asset-k. Let µih denote the mapping (x, x′) 7→ µih(x, x
′)

so that µ = {(µi1, µi2) : 1 ≤ i ≤ I} represents a Markov trading protocol, and (ξ, µ)

represents a Markov mechanism. We focus on Markov mechanisms.

Given a mechanism (ξ, µ), an agent’s strategy specifies the stage-1 actions and the

stage-2 actions for each history. An agent’s strategy is a Markov strategy if when the

realizations of the aggregate shock and the agent’s idiosyncratic shock are the same

in any two periods t and t′, it results in (i) the same end-of-stage-1 real portfolio in

t and t′ provided that the realized prices at trading posts imply the same relative

prices of two assets in t and t′, and (ii) the same stage-2 actions in t and t′ provided

that the agent and his meeting partner carry the same real portfolios and his partner

take the same actions in t and t′. We focus on Markov strategies.

Definition 1 Given a mechanism (ξ, µ), a profile of strategies is an equilibrium if

each strategy in the profile is a Markov strategy and the profile evaluated at any history

is a Nash equilibrium.

Definition 2 An allocation y is supported by a mechanism (ξ, µ) if, given (ξ, µ),

there exists an equilibrium whose outcome is y; it is an equilibrium allocation if it is

supported by some mechanism; and it is optimal if its welfare value W (y) is highest

among all equilibrium allocations. A mechanism is optimal if it supports an optimal

equilibrium allocation; an asset-supply policy is optimal if it is part of an optimal

mechanism.

4 A candidate optimal equilibrium allocation

We start by describing a set of allocations, denoted Y . The unique allocation that

maximizes W (y) on Y is the candidate optimal equilibrium allocation. The construc-

tion of the set Y uses a minimal condition for an allocation to be an equilibrium

allocation: the economy-wide future net utility gains must be sufficient to cover the

current stage-2 utility cost of production.
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Proposition 1 For an allocation y, let uih(y) = Uh(yih, θih), cih(y) = Ch(yih, ρih),

dih(y) = uih(y)−cih(y), ci(y) = 0.5[ci1(y)+ci2(y)], and di(y) = 0.5[di1(y)+di2(y)]. Let

κi(y) = [
∑

t≥1

∑
j β

tπij(t)dj(y)]−ci(y), where πij(t) is the t-step transition probability

from state i to j. Let Y = {y : κi(y) ≥ 0 all i}.
(i) If y is an equilibrium allocation, then y ∈ Y .

(ii) There exists a unique solution, denoted y◦, to the problem maxy∈YW (y).

(iii) Let y∗ be the efficient allocation, i.e., Uhq(y
∗
ih, θih) = Chq(y

∗
ih, ρih) all (i, h).

Then y◦ ≤ y∗.

(iv) Let yi = (yi1, yi2). For each i, κi(y
◦) > 0 only if y◦i = y∗i .

(v) For each i, U2q(y
◦
i2, θi2)/C2q(y

◦
i2, ρi2) = U1q(y

◦
i1, θi1)/C1q(y

◦
i1, ρi1).

Proof. For part (i), suppose y is an equilibrium allocation. When the current

period is t and the current state is i, let Niht(0) and Niht(1) denote the sets of agents

who consume and produce yih at stage-2 in sector-h, respectively. Let viht(n, s) denote

the continuation value of agent n at the end of period t if n ∈ Niht(s) for s ∈ {0, 1}.
Let Vit(s) =

∫
n∈Niht(s)

[vi1t(n, s) + vi2t(n, s)]dn. Then the economy-wide continuation

value at the end of period t is

Vit = Vit(0) + Vit(1). (1)

Because the economy-wide stage-1 net utility gain in period t + 1 is zero, we have

Vit = βEi[di(y) + Vjt+1]. By iteration, this gives rise to

Vit =
∑
τ≥1

∑
j

βτπij(τ)dj(y). (2)

Because each agent can always choose to stay in permanent autarky, his continuation

value at the end of t is bounded below by zero for any portfolio held. So Vit(0) ≥ 0.

This and (1) imply Vit(1) ≤ Vit. Also, in order to ensure that producer n ∈ Niht(1) in

sector-h produces yih (instead of choosing autarky in the current stage-2), vhit(n, 1)

must be bounded below by cih(y), implying ci(y) ≤ Vit(1). Using this, Vit(1) ≤ Vit,

and (2), we conclude that y ∈ Y . Now consider part (ii). Because κi(y) is strictly

concave in y, Y is convex. Because W (y) is strictly concave in y, W (y) has a unique

maximum on Y . Parts (iii) and (iv) are obvious. For part (v), let I = {i : κi(y
◦) = 0}

and Y ′ = {y ∈ R2I
+ : yi = y∗i if i /∈ I}. By part (iv), y◦ maximizes W (y)+

∑
i∈I ιiκi(y)

for y ∈ Y ′ (ιis are Lagrange multipliers), implying the desired property of y◦.

Using the argument in the proof of Proposition 1 (i), we see that W (y◦) > W (y)
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for any equilibrium allocation y ̸= y◦ even when there ismemory—everyone’s identity,

type realization in each period, and actions taken at any time are public information.

5 A symmetric two-state example

Here we use a simple example to illustrate how memory supports y◦ as an equilibrium

allocation, and then draw from this a few general lessons regarding how assets may

support y◦.

Let I = 2, (θ11, ρ11, θ12, ρ12) = (θ22, ρ22, θ21, ρ21), U1(q, θ) = U2(q, θ), C1(q, ρ) =

C2(q, ρ), and πij = 0.5 all (i, j). That is, sector-1 in state-1 is like sector-2 in state-2,

and vice versa; and each state occurs with probability 0.5 in each period. In particular,

there are sector-specific risks but there is no aggregate risk. To further simplify

matters, let y◦ = y∗. Denote by d∗ the common value of d1(y
∗) and d2(y

∗), and by c∗

the common value of c1(y
∗) and c2(y

∗). Then
∑

t≥1

∑
j β

tπij(t)dj(y
∗) = β(1− β)−1d∗

so that y◦ = y∗ implies β(1 − β)−1d∗ ≥ c∗. Let u∗
ih = uih(y

∗), c∗ih = cih(y
∗), and

d∗ih = dih(y
∗). Suppose c∗11 > c∗12 and that β is such that

β(1− β)−1d∗ = c∗. (3)

Suppose there is memory (and no nominal assets). It is useful to start with

the risk-sharing role of stage-1. If there were no stage-1, then y∗ could not be an

equilibrium allocation. For, the planner could only rely on sector-1 future net utility

gains 0.5β(1 − β)−1(d∗11 + d∗21) = β(1 − β)−1d∗ (note d∗21 = d∗12) to compensate the

stage-2 production cost c∗i1 in sector-1. This requires

β(1− β)−1d∗ ≥ max{c∗11, c∗21} = max{c∗11, c∗12} = c∗11.

But by (3), c∗11 > c∗12 and c∗ = 0.5(c∗11 + c∗12) imply β(1− β)−1d∗ < c∗11.

Stage-1 provides the simplest way—transferable utility—to achieve risk sharing.

When the current period is not the first period, the current state is i, and the last

state is l, the planner can ask each sector-h consumer to surrender

d∗ih + (c∗ih − c∗) + β(1− β)−1d∗

units of goods at stage-1, and transfer β−1c∗lh to each sector-h agent who produced y∗lh
in the last period. Consequently, the planner receives (1−β)−1d∗ and gives out β−1c∗.

By (3), these two amounts are equal. Any consumer who fails to surrender the suitable
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amount at stage-1 and any producer who fails to produce the suitable amount at stage-

2 are punished by permanent autarky. With this arrangement, a sector-h producer’s

continuation value right after producing y∗ih is β[β
−1c∗ih−0.5(1−β)−1d∗+(1−β)−1d∗] =

c∗ih + 0.5c∗. Thus, permanent autarky is a sufficient threat to ensure that y∗ih is

produced at stage-2. A sector-h consumer’s continuation value right after receiving

y∗ih at stage-2 is β[−0.5(1−β)−1d∗+(1−β)−1d∗] =0.5c∗, implying that the continuation

value when exiting stage-1 is u∗
ih + 0.5c∗. Because

d∗ih + (c∗ih − c∗) + β(1− β)−1d∗ = u∗
ih − c∗ + β(1− β)−1d∗ = u∗

ih,

permanent autarky is a sufficient threat to ensure that u∗
ih is surrendered at stage-1.

This simple risk-sharing arrangement reveals two general lessons. First, in order

to cover the production cost of the allocation at each state, the planner must extract

at each state at stage-1 the aggregate amount that matches the current and future net

utility gains of the allocation. Second, the planner needs to split the aggregate amount

between two sectors in a way that satisfies the individual participation constraint at

stage-1 in each sector. In the above example, at state-i, the aggregate extracted

amount is (1−β)−1d∗, which is split into 0.5u∗
i1 and 0.5u∗

i2. Needless to say, these two

conditions also apply when allocations are achieved using assets instead of memory.

With nominal assets, however, there is an additional constraint. Suppose, as will

be the case, that asset-h is only held by sector-h consumers and that each sector-h

consumer spends u∗
ih to obtain asset-h at stage-1. The additional constraint is that

the payment of asset-h made by a consumer at stage-2 must be sufficient to cover

the production cost c∗ih. But that depends on the expected rate of return of asset-h.

Those rates turn out to depend on how the aggregate extracted amounts are split

and on the asset-supply policy.

Now let us use the above discussion to see why some extreme policies may not

be optimal. With two currencies, the extreme policies are the policy that results in

floating exchange rates and the policy with fixed exchange rates. As shown in Zhu

[15], flexible exchange rates eliminate any across-sector risk sharing. Specifically, as

with memory but without stage-1, the planner can only rely on each sector’s own

future net utility gains to compensate its current production cost. Fixed exchange

rates, while allowing for risk sharing, introduce a different problem. For general

preferences, the fixed rate prevents currencies from being priced according to state-

specific fundamentals in the stage-1 market. Consequently, the planner cannot fully
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utilize the economy-wide current and future net utility gains. In other words, with

no room for different assets to have different state-contingent rates of return, a fixed

exchange-rate regime cannot generate the pattern of returns necessary to implement

the optimal equilibrium allocation. This logic extends to the setting with currency

and bonds. With currency and bonds, the extreme policies are the policy that results

in a fixed currency-to-bonds ratio (across all states) and the policy that fixes the

price of bonds at unity (a zero net interest rate). The latter policy resembles fixed

exchange rates. The former resembles flexible exchange rates.

But what is the optimal policy among a continuum of policies between the ex-

tremes? Our main contribution is finding a way that jointly determines the optimal

(across-state) splits and policy, the splits and policy that support the allocation y◦.

6 Rates of return of assets

Given the significance of rates of return of assets discussed above, our task here is

to express those rates in an equilibrium (for a given mechanism) by a pair of state-

dependent vectors.

Lemma 1 Given a mechanism (ξ, µ), suppose there exists an equilibrium.

(i) The ratio of the nominal quantities of the two assets depends on the current

state, but not on the date. Moreover, letting λi denote the state-i ratio of the nominal

quantity of asset-2 to the nominal quantity of asset-1, and zi denote the state-i amount

of stage-1 goods used to acquire all the assets held at the end of stage-1, we have

zi1 =
zi

1 + λiξi
and zi2 =

λiξizi
1 + λiξi

, (4)

where zik is the state-i amount of stage-1 goods used to acquire asset-k.

(ii) The expected gross rate of return of each asset depends on the current state

but not on the date. Moreover, letting γik denote the state-i expected gross rate of

return of asset-k, we have

γi1 = Ei
zj
zi

1 + λiξi
1 + λiσj

and γi2 = Ei
zj
zi

1 + λiξi
1 + λiσj

σj

ξi
, (5)

where σj = 1 in setting (a) (assets are two currencies) and σj = ξj in setting (b)

(assets are currency and bonds).
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(iii) When i is the current state, the continuation value νih(x) for a sector-h agent

holding the real portfolio x at the end of the period is νih(x) = β
∑

k xkγik + βEiAjh,

where Ajh is a constant that does not depend on x.

Proof. When t is the current period and i is the current state, let mt
ik be the

nominal quantity of asset-k at the end of stage-1, and let ϕt
ik be the per unit price

of asset-k in units of the stage-1 good at the trading post that trades asset-k and

the stage-1 good. Thus, ϕt
ikm

t
ik is the total amount of stage-1 goods used to acquire

asset-k at stage-1. Recall that the planner stands to exchange one unit of asset-2 for

ξi units of asset-1. By no-arbitrage at stage-1, ξi = ϕt
i2/ϕ

t
i1 so

ϕt
i1m

t
i1 =

ϕt
i1m

t
i1 + ϕt

i2m
t
i2

1 + (mt
i2/m

t
i1)ξi

. (6)

By Definition 1, ϕt
ikm

t
ik does not depend on t (strategies are Markov strategies). So

by (6), the ratio mt
i2/m

t
i1 of the nominal quantities of two assets does not depend on

t. By the definition of zi, zi = ϕt
i1m

t
i1 + ϕt

i2m
t
i2. Thus by (6) and the definition of λi,

mt
i1ϕ

t
i1 =

zi
1 + λiξi

and mt
i2ϕ

t
i2 =

λiξizi
1 + λiξi

. (7)

This proves part (i). When the next state is j, the nominal value of all assets in units

of asset-1 in the coming stage-1 market is mt
i1 +mt

i2σj = mt
i1(1 + λiσj) and the per

unit price of asset-1 is

ϕt+1
j1 =

zj
mt

i1 +mt
i2σj

=
zj

mt
i1(1 + λiσj)

. (8)

By (7) and (8),

Ei

ϕt+1
j1

ϕt
i1

= Ei(
zj
zi

1 + λiξi
1 + λiσj

) and Ei

ϕt+1
j2

ϕt
i2

= Ei(
zj
zi

1 + λiξi
1 + λiσj

σj

ξi
).

Thus, the expected gross rate of return of asset-k at state-i does not depend on the

date. In particular, we have (5). This proves part (ii). Part (iii) follows from the

linear preference of stage-1 goods.

In what follows, we refer to the vectors λ = (λ1, ..., λI) and z = (z1, ..., zI) as

the characterizing vectors of an equilibrium. Relating to the discussion in section 5,

zi represents the amount of goods received by the planner from agents at stage-1.

Suppose only consumers hold assets and sector-h consumers only hold asset-h. Then

zi1 and zi2 represent the split of zi between consumers of the two sectors.
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7 Showing that y◦ is the optimal equilibrium allo-

cation

By Proposition 1, y◦ is the unique optimal equilibrium allocation if it is an equilibrium

allocation. To show that y◦ is an equilibrium allocation, we proceed in three steps.

First, we construct the candidate characterizing vectors, λ and z, and the candidate

asset-supply policy ξ, and show that the rates of return and the split of z (into zi1

and zi2) implied by those candidates have the desired properties. Second, we propose

the candidate trading protocol µ that induces each sector-h consumer to spend 2zih

at state-i.6 Lastly, we use the above candidates to construct a strategy profile and

show that given the candidate mechanism, this profile is an equilibrium and that y◦

is the outcome of this equilibrium. Throughout this section, we let cih = cih(y
◦),

dih = dih(y
◦), ci = 0.5(ci1 + ci2), and di = 0.5(di1 + di2).

7.1 Candidate z, λ, and ξ

The candidate z is determined by

zi = di +
∑
t≥1

∑
j

βtπij(t)dj. (9)

This is the natural candidate because βEizj = βEi[dj +
∑

t≥1

∑
l β

tπjl(t)dl] or

βEizj =
∑
t≥1

∑
j

βtπij(t)dj. (10)

That is, z fully utilizes the current and future net utility gains of the allocation y◦.

The candidate λ and ξ are determined by

ci2
ci1

= (Ei
zj

1 + λiσj

)−1Ei
λiσjzj
1 + λiσj

, (11)

and

λiξi = (0.5di1 + βEi
zj

1 + λiσj

)−1(0.5di2 + βEi
λiσjzj
1 + λiσj

). (12)

Conditions (11) and (12) represent two optimality principles. The first is that the

ratio of the (expected) future real values of the two assets is proportional to the ratio

6Each individual consumer takes aggregates such as zi and its split as given when choosing his real
portfolio x at stage-1. The optimal x must agree with the aggregates in equilibrium. In particular,
if each sector-h consumer chooses x = xih at state-i, then xihh = 2zih.
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of the current production costs. The second is that the ratio of the current real value

of the two assets is proportional to the ratio of the continuation payoffs of agents who

hold the two assets. Of course, we need to show that there exists such (λ, ξ).

Lemma 2 There exists (λ, ξ) so that (11) and (12) hold for all i.

Proof. For setting (b) (currency and bonds), existence is obvious. Indeed, with

σj = 1, (11) and (12) become

λi =
ci2
ci1

(13)

and

λiξi = (0.5di1 +
βEizj
1 + λi

)−1(0.5di2 +
λiβEizj
1 + λi

). (14)

For setting (a) (two currencies), σj = ξj so (11) and (12) become

ci2Ei
zj

1 + λiξj
= ci1Ei

λiξjzj
1 + λiξj

(15)

and

λiξi = (0.5di1 + βEi
zj

1 + λiξj
)−1(0.5di2 + βEi

λiξjzj
1 + λiξj

). (16)

Let Eizj(1 + λiξj)
−1 = aEizj and Eiλiξjzj(1 + λiξj)

−1 = (1 − a)Eizj. By (15),

aci2 = (1− a)ci1. So a = ci1(2ci)
−1 and we have

βEi
zj

1 + λiξj
=

ci1βEizj
2ci

(17)

and

βEi
λiξjzj
1 + λiξj

=
ci2βEizj

2ci
. (18)

By (17) and (18), (16) can be written as λi = gi/ξi, where

gi =
di2 + (ci2/ci)βEizj
di1 + (ci1/ci)βEizj

.

Substituting λi = gi/ξi into (15) yields

Ei
ci1ξjgi − ci2ξi

ξjgi + ξi
zj = 0. (19)

To show that there exists ξ satisfying (19), let ∆ = {δ = (δ1, ..., δI) ∈ RI
+ :

∑I
i=1 δi =

1} and for φ ∈ [0, 1], define a mapping Lφ = (Lφ
i , ..., L

φ
i ) on ∆ by

Lφ
i (δ) = φ[δi +Ki(δ)] + (1− φ)δ̄i,

13



where δ̄ is an interior point of ∆ (i.e., δ̄i > 0 all i) and

Ki(δ) = Ei
ci1δjgi − ci2δi

δjgi + δi
zj.

It suffices to show that L1 has a fixed point. We claim that for any φ, the mapping

Lφ does not have a fixed point on the boundary of ∆, i.e., if δ ∈ ∆ has δi = 0 for

some i, then δ ̸= Lφ(δ). To see this, note that if δi = 0 then Ki(δ) > 0, which implies

Lφ
i (δ) > 0. It follows from the claim that L1 and L0 have the same fixed-point index

(see Zeidler [13, Theorem 12.A, p. 535]). Because that index is 1 for L0 (see Zeidler

[13, Definition 12.3.(A1), p. 529]), L1 has a fixed point (see Zeidler [13, Proposition

12.4(2), p. 530]). This completes the proof.

Lemma 3 Let (z, λ, ξ) be as specified in (9), (11), and (12). Let zih and γih be as

specified in (4) and (5).

(i) For each (i, h), βzihγih ≥ 0.5cih and strictly only if y◦i = y∗i .

(ii) For each (i, h), zih = 0.5dih + βzihγih.

Proof. Fix i. As shown in the proof of Lemma 2, (11) implies

βEi
zj

1 + λiσj

=
ci1βEizj

2ci
and βEi

λiσjzj
1 + λiσj

=
ci2βEizj

2ci
. (20)

Using y◦ ∈ Y and (10), we have βEizj ≥ ci. So (20) implies

βEi
zj

1 + λiσj

≥ 0.5ci1 and βEi
λiσjzj
1 + λiσj

≥0.5ci2, (21)

which by (4) and (5) imply βzihγih ≥ 0.5cih all h. Now suppose βzihγih > 0.5cih for

some h. Then βEizj > ci, which by Proposition 1 (iv) and (10), implies y◦i = y∗i . To

continue, using (12), we have

(1+λiξi)(0.5di1+βEi
zj

1 + λiσj

) = 0.5di1+βEi
zj

1 + λiσj

+0.5di2+βEi
λiσjzj
1 + λiσj

(22)

and
1 + λiξi
λiξi

(0.5di2 + βEi
λiσjzj
1 + λiσj

) = (1 + λiξi)(0.5di1 + βEi
zj

1 + λiσj

). (23)

Because the right-hand side of (22) is equal to di + βEizj, it follows from (9), (22),

and (23) that
zi

1 + λiξi
= 0.5di1 + βEi

zj
1 + λiσj

(24)

14



and
λiξizi
1 + λiξi

= 0.5di2 + βEi
λiσjzj
1 + λiσj

, (25)

which by (4) and (5) imply zih = 0.5dih + βzihγih all h.

Lemma 3 (i) and (ii) establish two desired properties of the rates of return and

the split of z (into zi1 and zi2) implied by (z, λ, ξ) in (9), (11), and (12): the future

value of asset-h can cover the current stage-2 production cost at sector-h; and the

split can satisfy the individual consumer’s participation constraint at stage-1.

7.2 Candidate trading protocol µ

The construction of the candidate trading protocol µ uses the rates of return γi1 and

γi2 and the asset’s real stage-1 values zi1 and zi2 implied by (z, λ, ξ) in (9), (11), and

(12). As it turns out, when assets have those implied rates of return, µ induces a

sector-h consumer to leave stage-1 with only asset-h whose real value is 2zih at state-i.

It is convenient to describe µ in terms of the following problem.

Problem 1 The meeting outcome µih(x, x
′) = (yih(x, x

′), pih1(x, x
′), pih2(x, x

′))) as-

signed by µ for a pairwise meeting in sector-h at state-i between a consumer carrying

the real portfolio x = (x1, x2) and a producer carrying the real portfolio x′ = (x′
1, x

′
2)

is determined by a two-step optimization problem.

Step 1. Let a meeting outcome (ỹih, p̃ih1, p̃ih2) be determined as follows. Let

p̃ihk = 0 for k ̸= h. If xh ≥ 2zih then

(ỹih, p̃ihh) = argmaxUh(q, θih)− βphγih (26)

subject to q ≥ 0, 0 ≤ ph ≤ xh, and −ρihc(q) + βphγih ≥ 0; otherwise,

(ỹih, p̃ihh) = argmax−Ch(q, ρih) + βphγih (27)

subject to q ≥ 0, 0 ≤ ph ≤ xh, and Uh(q, θih)− βphγih ≥ 0.

Step 2. Let µih(x, x
′) = argmax−Ch(q, ρih) + β(p1γi1 + p2γi2) subject to q ≥ 0,

0 ≤ pk ≤ xk all k, and Uh(q, θih)− β(p1γi1 + p2γi2) ≥ Uh(ỹih, θih)− βp̃ihhγih.

For Problem 1, suppose that the two agents in the problem are in an equilibrium

where the rate of return of asset-h is γih. The step-2 optimization ensures that

the outcome µih(x, x
′) is in the pairwise core. This follows because this outcome

15



maximizes the producer’s payoff conditional on not making the consumer worse off

than the trade (ỹih, p̃ih1, p̃ih2) obtained from the step-1 optimization and because

there is no restriction on which asset can be used to make payments. The step-1

optimization serves two purposes. First, by the restriction on the payment, it gives

the consumer a reward for offering the right asset for the meeting. Indeed, if the

consumer does not carry the right asset, then the step-1 outcome is always (0, 0, 0)

so that the step-2 optimization gives the producer all the surplus from trade. This

aspect of the design of the trading protocol is borrowed from Zhu and Wallace [17] and

endogenizes no asset-substitution. Second, the step-1 optimization gives the consumer

an incentive to spend 2zih at stage-1 on acquiring nominal asset-h. Indeed, if the

consumer carries only the right asset in the proper amount, the step-1 optimization

assigns all surplus to the consumer. This design is borrowed from Hu et al. [2] and

Hu and Rocheteau [3].7

Lemma 4 Let (z, λ, ξ) be as specified in (9), (11), and (12) and let µ be the trading

protocol in Problem 1. Let xi1 = (2zi1, 0), xi2 = (0, 2zi2), and x′
i1 = x′

i2 = (0, 0).

(i) yih(xih, x
′
ih) = y◦ih and pihh(xih, x

′
ih) < 2zih only if y◦ih = y∗ih.

(ii) For every (i, h),

x′
ih ∈ arg max

x′=(x′
1,x

′
2)
−
∑
k

x′
k − Ch(yih(xih, x

′), ρih) + β
∑
k

[xk + pihk(xih, x
′))]γik. (28)

(iii) For every (i, h),

xih ∈ arg max
x=(x1,x2)

−
∑
k

xk + Uh(yih(x, x
′
ih), θih) + β

∑
k

[xk − pihk(x, x
′
ih))]γik. (29)

Proof. By Lemma 3 (ii), βγih < 1. For part (i), let q = yih(xih, x
′
ih) and

ph = pihh(xih, x
′
ih). By (26), Ch(q, ρih) = βphγih. By βγih < 1 and Lemma 3 (i),

Uhq(q, θih) ≥ Chq(q, ρih) and ph < 2zih only if q = y◦ih = y∗ih. If q < y∗ih then

Ch(q, ρih) = 2βzihγih, which, by Lemma 3 (i), implies q = y◦ih. By βγih < 1, part

(ii) is immediate. For part (iii), without loss of generality, let us consider a sector-

1 consumer who carries a portfolio x = (x1, 0) at the end of stage-1, and meets

a producer carrying x′
i1 at stage-2. Let w(x1) denote the consumer’s stage-1 and

stage-2 payoff from carrying x = (x1, 0). By part (i), yi1(xi1, x
′
i1) = y◦i1 so

w(2zi1) = −2zi1 + U1(y
◦
i1, θi1) + β[2zi1 − pi11(xi1, x

′
i1)]γi1 + A, (30)

7Problem 1 does not represent an extensive game form with two rounds of alternating offers but
it may be understood as a gradual bargaining problem (see O’Neill et al. [8]).
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where A is a constant independent of x1 (see Lemma 1 (iii)) and 2zi1 > pi11(x, x
′
i1)

only if y◦i1 = y∗i1. To proceed, let us consider two cases of x1 ̸= 2zi1.

Case 1: x1 < 2zi1. Then w(x1) = −x1 + βx1γi1 + A. By (30) and βγih < 1,

w(x1) < w(2zi1).

Case 2: x1 > 2zi1. If y◦i1 = y∗i1 then w(x1) = w(2zi1) + (x1 − 2zi1)(−1 + βγi1).

By (30) and βγih < 1, w(x1) < w(2zi1). Now consider y◦i1 ̸= y∗i1. Note that w(.) is

concave in [2zi1,∞) and that there exists some x̄1 > 2zi1 such that

w(x1) = −x1 + U1(yi1(x, x
′
i1), θi1) + A

with C1(yi1(x, x
′
i1), ρi1) = βx1γi1 for x1 ∈ [2zi1, x̄1). It follows that

w′
+(2zi1) = −1 + βγi1U1q(y

◦
i1, θi1)/C1q(y

◦
i1, ρi1),

where w′
+(2zi1) is the right derivative of w(.) at 2zi1. By Lemma 3, we have 2βzi1γi1 =

C1(y
◦
i1, ρi1) and 2zi1 = U1(y

◦
i1, θi1) so

U1q(y
◦
i1, θi1)/C1q(y

◦
i1, ρi1) < U1(y

◦
i1, θi1)/C1(y

◦
i1, ρi1) = 1/(βγi1),

where the inequality uses U1(0, θi1) = C1(0, ρi1) = 0, concavity of U1(., θi1), and

convexity of C1(., ρi1). Thus w
′
+(2zi1) < 0, implying w(x1) < w(2zi1)

To conclude, the portfolio xi1 dominates the portfolio (x1, 0) with x1 ̸= 2zi1. By

βγih < 1, the portfolio (x1, 0) dominates (x1, x2) with x2 > 0 for any x1. This proves

part (iii).

7.3 Equilibrium

Let us first use (ξ, λ, z) in (9), (11), and (12) and µ in Problem 1 to construct the

strategy profile F in which all strategies are the same. The common strategy f in F

specifies the following actions for each agent when the current state is i.

(P) The agent is a producer at stage-2 in sector-h. At stage-1, first adjust the

ratio of the nominal quantity of asset-2 to the nominal quantity of asset-1 to λi (by

exchanging assets with the planner). Next sell all the assets at the trading posts. At

round-1 of the stage-2 game, say yes ; at round-2, say yes to a proposal (q, p1, p2) iff

β
∑
k

[pk − pihk(xih, x
′)]γik ≥ Ch(q, ρih)− Ch(yih(x, x

′), ρih),

where x′ is the agent’s real portfolio and x is his partner’s.
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(C) The agent is a consumer at stage-2 in sector-h. At stage-1, first adjust the

ratio of the nominal quantity of asset-2 to the nominal quantity of asset-1 to λi

(by exchanging assets with the planner). Next, provided that m1 is the aggregate

nominal quantity of asset-1 at the start of the period, submit orders in the trading

posts that result in the real portfolio xih as if the realized prices of asset-1 and asset-2

were zi1m
−1
1 and ξizi1m

−1
1 , respectively. At round-1 of the stage-2 game, say yes ; at

round-2, when the agent holds x and his partner holds x′, propose µih(x, x
′).

Lemma 5 Let (ξ, λ, z) be as specified in (9), (11), and (12) and let µ be the trad-

ing protocol in Problem 1. Given the mechanism (ξ, µ), the strategy profile F is an

equilibrium whose outcome is y◦.

Proof. Suppose all agents follow f all the time. Let i be the current state.

Then, provided that m1 is the aggregate nominal quantity of asset-1 at the start

of the period, the realized prices of asset-1 and asset-2 at trading posts are zi1m
−1
1

and ξizi1m
−1
1 , respectively. Moreover, the consumers and producers who consume

and produce in sector-h enter stage-2 with the portfolios xih and x′
ih (see Lemma 4).

Furthermore, when a consumer carrying x meets a producer carrying x′ in sector-h

at state-i, the outcome µih(x, x
′) is in the pairwise core. Therefore, provided that all

other agents follow f all the time, no agent wants to deviate from f in any stage-2

pairwise meeting, and, in addition, by Lemma 4 (ii) and (iii), no agent wants to

deviate from f in stage-1. We conclude that F is an equilibrium. By Lemma 4 (i),

the outcome of F is y◦. This completes the proof.

Proposition 2 The allocation y◦ is the unique optimal equilibrium allocation.

Proof. By Lemma 5, y◦ is an equilibrium allocation. By Proposition 1 (i) and

(ii), y◦ is the unique optimal equilibrium allocation.

8 Optimal asset-supply policy

Let (ξ, λ, z) in (9), (11), and (12) be denoted (ξ◦, λ◦, z◦). For some specifications of the

aggregate uncertainty and the discount factor, there are multiple optimal asset-supply

policies. Indeed, given the aggregate uncertainty, which determines the efficient al-

location y∗, if β is sufficiently close to unity, then not only is y◦ = y∗, but because
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the future net utility gains are more than sufficient to cover the current stage-2 pro-

duction cost, there are multiple (ξ, λ, z) that differ from (ξ◦, λ◦, z◦) and support y◦.

Our interest is in the optimal policies when the planner is constrained by the future

net utility gains. To be precise, we introduce in the following lemma a reference

point of the discount factor for an arbitrary y, denoted β(y), such that the planner

is constrained when β = β(y◦).

Lemma 6 Let βi(y) be uniquely determined by
∑

t≥1

∑
j[βi(y)]

tπij(t)dj(y) = ci(y).

Let β(y) = maxi βi(y).

(i) y ∈ Y if and only if β ≥ β(y).

(ii) β > β(y◦) only if y◦ = y∗.

(iii) Let β = β(y◦). Suppose (ξ, µ) supports y◦ and let λ and z be the characterizing

vectors of the corresponding equilibrium. Then

λiξi = λ◦
i ξ

◦
i (31)

for all i and
cl2(y

◦)

cl1(y◦)
= (El

zj
1 + λlσj

)−1El
λlσjzj
1 + λlσj

(32)

for l ∈ argmaxi βi(y
◦); moreover, if y◦i ̸= y∗i all i, then (λ, ξ) = (λ◦, ξ◦).

Proof. For part (i), for the “if” part, suppose β ≥ β(y). Then κi(y) ≥ 0 all i so

y ∈ Y . For the “only-if” part, suppose β < β(y). Then κi(y) < 0 for some i so y /∈ Y .

For part (ii), suppose by contradiction that β > β(y◦) while y◦ ̸= y∗. Without loss

of generality, suppose y◦11 < y∗11. Let y be such that yih = y◦ih if (i, h) ̸= (1, 1) and

y11 = y◦11 + ϵ, where ϵ > 0. By β > β(y◦), κ1(y
◦) > 0 so y ∈ Y when ϵ is sufficiently

small. Clearly, W (y) > W (y◦), a contradiction. For part (iii), first note that when

β = β(y◦), z must equal z◦. Examining (22)-(25) in the proof of Lemma 3, one sees

that (31) is necessary for z = z◦. Also, by β = β(y◦), cl(y
◦) = βElz

◦
j so (32) must

hold. Further suppose y◦i ̸= y∗i all i. Then λ and ξ must satisfy (11) and (12) so

(λ, ξ) = (λ◦, ξ◦).

We say that an asset-supply policy ξ is the simple policy if ξi = 1 all i. Given

an exogenously fixed number υ > 0, we say that ξ is a fixed-asset-ratio policy if it

happens to result in an equilibrium with λi = υ all i. For setting (a) (two currencies),

the simple policy represents a fixed exchange-rate regime, and a fixed-asset-ratio

policy represents a flexible exchange-rate regime.
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Proposition 3 Suppose β = β(y◦). Let l ∈ argmaxi βi(y
◦).

(i) Suppose U2q(y
◦
l2, θl2)/C2q(y

◦
l2, ρl2) = U1q(y

◦
l1, θl1)/C1q(y

◦
l1, ρl1) implies

U2(y
◦
l2, θl2)/C2(y

◦
l2, ρl2) ̸= U1(y

◦
l1, θl1)/C1(y

◦
l1, ρl1). (33)

Then the simple policy is not optimal.

(ii) Let Chρ = ∂Ch/∂ρ and suppose C1ρ(y
◦
l1, ρl1)C2ρ(y

◦
l2, ρl2) ̸= 0. Then when the

shock vector {(θi1, ρi1, θi2, ρi2)}Ii=1 is outside a measure-zero set in R4I , a fixed-asset-

ratio policy is not optimal.

Proof. Suppose (ξ, µ) supports y◦ and let λ and z be the characterizing vectors

of the corresponding equilibrium. For part (i), suppose by contradiction that ξ is the

simple policy. Then by (31) and (12),

λl = [0.5dl1(y
◦) + β(y◦)El

z◦j
1 + λl

]−1[0.5dl2(y
◦) + β(y◦)El

λlz
◦
j

1 + λl

]. (34)

By (32) and (11),

λl =
cl2(y

◦)

cl1(y◦)
. (35)

By (34), λl = dl2(y
◦)/dl1(y

◦). Then by (35), dl2(y
◦)/dl1(y

◦) = cl2(y
◦)/cl1(y

◦) or

equivalently,

U2(y
◦
l2, θl2)/C2(y

◦
l2, ρl2) = U1(y

◦
l1, θl1)/C1(y

◦
l1, ρl1). (36)

But by Proposition 1 (v), we must have (33), which contradicts (36).

For part (ii), suppose ξ is a fixed-asset-ratio policy. Then (32) becomes

cl1(y
◦)El

υσjzj
1 + υσj

= cl2(y
◦)El

zj
1 + υσj

for some given υ > 0. For setting (b) (currency and bonds), this leads to

υcl1(y
◦) = cl2(y

◦), (37)

which can only hold for a measure zero set of {(θi1, ρi1, θi2, ρi2)}Ii=1 in R4I . For setting

(a), the argument is somewhat indirect. Following the argument in Zhu [15], we can

show that with flexible exchange rates, y◦ is an equilibrium outcome only if

clh(y
◦) = βElzjh (38)

all h. But again, (38) can only hold for a measure zero set of {(θi1, ρi1, θi2, ρi2)}Ii=1 in

R4I .
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The assumption in Proposition 3 (i) is a specific property of preferences: if the

total utility-disutility ratios are equal across sectors in a state, then their marginal

ratios must differ. This property ensures that a simple policy cannot be optimal.

As shown in the proof of Proposition 3, for the simple policy to implement the op-

timal allocation, it must align the total ratios. But the optimal allocation itself has

aligned marginal rates. Thus, the assumption rules out optimality of the simple pol-

icy. It seems that the only specification of Uh and Ch that violates the assumption is

multiplicative shocks and power functions; i.e., Uh(q, θ) = θqa and Ch(q, ρ) = ρqb.

In the proof of Proposition 3 (ii), (38) is the consequence of flexible exchange

rates indicated at the end of section 5. That is, the value of currency h is completely

determined by the current and future net utility gains of sector-h and, therefore,

sector-h can only rely on its own future net utility gains to compensate its current

production cost. With currency and bonds, there is only one nominal asset at the

start of each period, and the value of the nominal asset at that time is determined

by the economy-wide current and future net utility gains. But because the currency-

bond ratio is fixed exogenously, each sector can only use a fixed part of economy-wide

future net utility gains, resulting in (37).

9 Concluding remarks

We have found that complicated asset arrangements are helpful for two-sector Lagos-

Wright [5] economies subject to sector-specific shocks if the shocks are large enough

or if there is sufficient impatience. Suppose we consider a more general model in

which the linear good appears only periodically, rather than every period.8 For a

simple policy and given shocks, it is evident that the discount factor consistent with

achievement of the efficient outcome increases as the period (between linear good

meetings) increases. Thus, it is very likely that the set of parameters for which a

simple policy is best shrinks as the period increases. In the limit, when the linear good

never appears, it is likely that there is no discount factor consistent with achievement

of the efficient outcome (see Wallace [12]). Finally, there is nothing special about

two sectors. A plausible surmise is that a version of the model with k sectors is best

served if there are k assets with k different state-specific rates of return.

8Hu and Rocheteau [3] have shown that the version with period two has a role for private credit
and no such role when the linear good appears at every period.
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