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Abstract

We study the risk-sharing role of multiple outside assets in a two-sector
Lagos-Wright economy with aggregate shocks. Using a mechanism-design ap-
proach, we show how a planner can implement the best allocation achievable
with memory (perfect monitoring) by employing a state-contingent asset-supply
policy and a trading protocol that endogenizes no asset-substitution. The op-
timal policy requires active management of relative asset prices under large
shocks or impatience. If the two assets are the currencies of two countries, then
the optimum is neither fixed nor floating exchange rates.
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1 Introduction

A central question in monetary economics is how arrangements involving multiple
assets can improve welfare. In an international context, this includes exchange-rate
policy; in a one-country context, this includes interest-rate policy. This question
is often addressed in models where the distinct functions of the assets are imposed
exogenously (see, e.g., Lucas [6] and Lucas and Stokey [7]). In this paper, the rationale
for multiple assets arises from their essential role in facilitating risk sharing. Our work
has two distinct features. First, we use a background model in which money has a role
as a substitute for perfect monitoring or memory (see Townsend [11] and Kocherlakota
[4]). Second, following Zhu and Wallace [17], we achieve no asset-substitution in a
way that is consistent with having trade in each meeting between people in the model
be in the meeting-specific core, a desirable feature that does not hold in models with
country-specific or sector-specific cash-in-advance constraints and competitive trade.
The specific model we use is a two-sector version of the Lagos-Wright [5] model with
sector-specific aggregate shocks.!

The model is an infinite-horizon model with two stages at each discrete date.
Stage-1 is a centralized meeting with a linear good; stage-2 has people meeting in
pairs with general costs of production and utilities of consuming. In our version,
there are two stage-2 sectors that are distinguished by sector-specific productivity
and taste shocks in the pairwise meetings. The two outside assets are either two
currencies (when each sector is a country) or currency and a one-period discount
government bond (when the two sectors are part of a single country). In each case, a
planner supplies assets in the centralized meeting of the model at a state-dependent
relative price of the two assets—the nominal exchange rate in the first case, the
nominal interest rate in the second case. The model lends itself to the study of an ex
ante representative-agent notion of welfare. When there is sufficient impatience for
given shocks or when the shocks are large enough for a given degree of impatience, the
best policy has roles for both assets and is state-dependent. In particular, when the
two assets are currencies, the best policy is neither fixed nor floating exchange rates;

when the two assets are currency and bonds, the best policy is a state-dependent

! Aliprantis et al. [1] show that money is not essential in the Lagos-Wright [5] model. However,
Zhu [16] shows that their argument is not robust to a commodity-money refinement—attaching
an arbitrarily small utility payoff to money, one that in the limit plays no role in the monetary
equilibrium.



discount (or premium) on the bonds.

It turns out that we are able to support the outcome that is best if there were
perfect monitoring—memory. Notably, even with memory, the presence of the linear
stage-1 good is crucial for attaining the best allocation. We achieve that optimum
when there is no memory by having a particular active policy at stage-1 and a par-
ticular stage-2 trading protocol.

The active stage-1 policy must achieve the correct real value of assets in the
centralized meeting at each state—the value that equals the amount of utility that
memory can transfer at that state. Given no asset-substitution, it must also achieve
the correct split of that real value between the two assets and the correct (expected)
rate of return of each asset. The split is about risk sharing. Each asset’s rate of
return and its real value determine the asset’s (expected) future value, a value that
is used to compensate the current production cost in the sector’s stage-2 meetings.
The (across-state) splits and the planner’s asset-supply policy together determine the
rates of return. Our main contribution is showing that there exist optimal splits and
asset-supply policy that support the full-memory optimum and that the asset-supply
policy has the features mentioned above.

The stage-2 trading protocol is a generalization of that in Hu et al. [2]. In a
one-asset and one-sector version of the model without shocks, they show that there
is a protocol which, by rewarding buyers who hold a sufficient quantity of money,
achieves the outcome that would be best in a version of the model with memory.
Our protocol is similar except that it also uses the idea in Zhu and Wallace [17] that
endogenizes a favored asset for each sector.?

Our results depend on the quasi-linear preference feature of the Lagos-Wright [5]
model, the feature that implies that the distribution of wealth entering a date is not
a state variable of the model. In the conclusion, we say why we expect similar results
for policy to hold in less extreme versions of the model, versions in which the linear

good appears only periodically or not at all.

2Rocheteau and Nosal [9] use the protocol of Zhu and Wallace [17] in a two-country non-stochastic
version of the model to get a determinate exchange rate. Hu and Rocheteau [3] use versions of the
protocols in Zhu and Wallace [17] and Hu et al. [2] to avoid capital over-accumulation in a version
of the Lagos-Wright [5] model. The same class of protocols (from Zhu and Wallace [17] and Hu et
al. [2]) is used in Zhu [15], which applies the present model to compare fixed and flexible exchange
rates.



2 The environment

Time is discrete, dated as ¢ > 0. There is a [0,2] continuum of infinitely-lived agents.
The economy has two sectors, 1 and 2. At the start of period-0, agents are randomly
assigned to a sector and keep the sector affiliation forever. Each period has two
stages. Everyone is together at stage-1, while stage-2 has two-person meetings in
each sector. Stage-2 has one produced and perishable good in each sector. At stage-
1, each agent can produce and consume a good, whose payoff in terms of utility is
equal to the amount consumed or produced (positive for consumption, negative for
production). This is the critical feature of the Lagos-Wright [5] model that makes the
model tractable. (Notice that there are no aggregate gains from trade at stage-1.)

At the beginning of stage-1 of each period, two shocks are realized. Each agent
gets an idiosyncratic shock which makes them either a stage-2 producer or a consumer
for one date with equal probability.® And there is a publicly observed aggregate shock
which determines stage-2 preferences and technologies. There are I aggregate states.
The transition of states follows a Markov chain with a transition matrix © = (7;;),
which has a unique invariant distribution o = («q, ..., ). Let ¢ € {1,...,1} be the
current (aggregate) state. Then in sector-h, h € {1,2}, the utility of a consumer
who consumes ¢ > 0 is Uy(q,0;,) and the disutility of a producer who produces ¢
is Ch(q, pin), where O, pin, > 0, Up(0,6;) = Cr(0,pi) = 0, Upy = 0U,/0q > 0,
OUpe/0q < 0, Cpy = 0CL/0q > 0, 0Chy/0q > 0, BUwu(0,0:) > Chre(0, pir), and
p € (0,1) is the discount factor. Each agent maximizes expected discounted utility
with period utility given by the sum of stage-1 utility and stage-2 utility.

There are two outside nominal assets. We consider two settings: (a) the two assets
are two currencies; and (b) asset-1 is currency and asset-2 is a nominal one-period

discount government bond. Most of the analysis is common to both settings.

3 Mechanisms and equilibrium

There is a planner whose objective is to maximize ex ante welfare, each agent’s ex-
pected discounted utility prior to the realization of any shock at period-0. Because

of linearity of stage-1 goods, ex ante welfare only depends on stage-2 output. In

3In earlier versions, there was a second idiosyncratic shock which determined whether a consumer
visited the non-home sector at stage-2 for one period. It turned out that such a shock plays no role.



particular, W (y) = Z(i,h) &G [Un(Yin, Oin) — Ch(Yin, pin)] is the welfare value of an al-
location y = {(yi1,yi2) : 1 < i < I}, where y;;, is output in a stage-2 meeting in
sector-h at state-i. The planner is subject to the constraint that all trades be in the
meeting-specific core.

Because all agents meet together at stage-1, the relevant core is degenerate and
the planner’s choice effectively comes down to asset-supply policy. Such policy could
either be described in terms of quantities or in terms of prices. We choose prices
so that the planner stands ready to exchange one asset for the other at a (state-
dependent) price. This price is the nominal exchange rate in setting (a) and the
nominal interest rate in setting (b). Agents trade the linear good for each asset in
a respective Shapley-Shubik [10] trading post; they can trade one asset for the other
with the planner before and after trading at the two posts. The realized price in each
post is common knowledge. The individual bids at each post and the individual asset
trades are private information. There is no explicit taxation.*

Because agents meet in pairs at stage-2, the core for each pairwise meeting is
non-degenerate (provided that the consumer in a meeting holds valued assets) and
the planner’s choice is a trading protocol that assigns a trading outcome from the
pairwise core for each meeting. The game form for a pairwise meeting has two rounds
of moves. In the first round, the two agents say yes or mo simultaneously. If both
say yes, then the meeting moves to the second round; otherwise, the meeting ends
up with autarky. In the second round, the consumer proposes a trading outcome and
then the producer says yes or no. The game ends up with the proposed outcome if the
producer says yes and with the outcome assigned by the trading protocol otherwise.’
Each agent can observe his meeting partner’s portfolio, and the actions taken in the
meeting are only observed by the two agents in the meeting.

A mechanism is therefore represented by a stage-1 asset-supply policy and a stage-
2 trading protocol. A mechanism is a Markov mechanism if dependence of the stage-1
policy and the stage-2 trading protocol on history is restricted to the current state. To
be precise, let ¢ be the current state. The planner stands ready to exchange &; units of
asset-1 for one unit of asset-2 so that £ = (&1, ..., ;) represents a Markov asset-supply

policy. For a stage-2 trading protocol, consider a meeting in sector-h at state-i. En-

4As established in Hu et al. [2], lump-sum taxation, of the sort that would support the Friedman
rule, is not feasible in the model.
5This game form is used in Hu et al. [2] and Zhu [14].



tering the meeting, the consumer carries a real portfolio x = (x1, z3) of assets and the
producer carries @’ = (], x}), where z; and ) are values of asset-k, k € {1,2}, in
terms of the stage-1 good in the current stage-1 market. Then the trading outcome as-
signed by the trading protocol is p(z, ') = (yin(z, '), pin1(x, 2, pina(z, 2')), where
Yin(z,2") is the producer’s output (and the consumer’s consumption) and pipi(x, ')
is the consumer’s payment in asset-k. Let p;;, denote the mapping (z,2") — pp(x, 2')
so that u = {(ps, pi2) : 1 <@ < I} represents a Markov trading protocol, and (&, u)
represents a Markov mechanism. We focus on Markov mechanisms.

Given a mechanism (&, i), an agent’s strategy specifies the stage-1 actions and the
stage-2 actions for each history. An agent’s strategy is a Markov strategy if when the
realizations of the aggregate shock and the agent’s idiosyncratic shock are the same
in any two periods ¢ and ¢, it results in (i) the same end-of-stage-1 real portfolio in
t and ¢ provided that the realized prices at trading posts imply the same relative
prices of two assets in ¢ and ', and (ii) the same stage-2 actions in t and ¢’ provided
that the agent and his meeting partner carry the same real portfolios and his partner

take the same actions in ¢ and t'. We focus on Markov strategies.

Definition 1 Given a mechanism (&, i), a profile of strategies is an equilibrium if
each strategy in the profile is a Markov strategy and the profile evaluated at any history

1s a Nash equilibrium.

Definition 2 An allocation y is supported by a mechanism (&, ) if, given (&, p),
there exists an equilibrium whose outcome is y; it is an equilibrium allocation if it is
supported by some mechanism; and it is optimal if its welfare value W (y) is highest
among all equilibrium allocations. A mechanism is optimal if it supports an optimal
equilibrium allocation; an asset-supply policy is optimal if it is part of an optimal

mechanism.

4 A candidate optimal equilibrium allocation

We start by describing a set of allocations, denoted Y. The unique allocation that
maximizes W (y) on Y is the candidate optimal equilibrium allocation. The construc-
tion of the set Y uses a minimal condition for an allocation to be an equilibrium
allocation: the economy-wide future net utility gains must be sufficient to cover the

current stage-2 utility cost of production.



Proposition 1 For an allocation y, let uin(y) = Un(yin, Oin), cin(y) = Cr(Yin, pin),
din(y) = win(y) —cin(y), ci(y) = 0.5[ci1 (y) +ca(y)], and di(y) = 0.5dn (y)+dia(y)]. Let
Ri(Y) = D1 2o, B'mii(t)di(y)] —cily), where mij(t) is the t-step transition probability
from state i to j. LetY ={y: r;(y) >0 alli}.

(i) If y is an equilibrium allocation, then y € Y.

(11) There exists a unique solution, denoted y°, to the problem max,ey W (y).

(iii) Let y* be the efficient allocation, i.e., Upng(yiy, 0in) = Chq(Yh, pin) all (i, h).
Then y° < y*.

(iv) Let y; = (yi, Yiz). For each i, k;(y°) > 0 only if y? = y.

(v) For each i, Usy(y5s, Oia) | Coq(Ysas piz) = Urg(Y1, 0i1) [ Crq (i1, pin)-

Proof. For part (i), suppose y is an equilibrium allocation. When the current
period is ¢ and the current state is i, let N;;,(0) and Ny, (1) denote the sets of agents
who consume and produce y;;, at stage-2 in sector-h, respectively. Let vy (n, s) denote
the continuation value of agent n at the end of period ¢ if n € Ny, (s) for s € {0,1}.
Let Vi (s) = fneNim(s) [vi1t(n, $) + vige(n, $)]dn. Then the economy-wide continuation

value at the end of period ¢ is

Vie = Vi (0) + Vie(1). (1)
Because the economy-wide stage-1 net utility gain in period ¢ + 1 is zero, we have
Vit = BE;[di(y) + Vji+1]. By iteration, this gives rise to

Vie=>Y Y B7mi(7)d;(y). (2)

21

Because each agent can always choose to stay in permanent autarky, his continuation
value at the end of ¢ is bounded below by zero for any portfolio held. So V;;(0) > 0.
This and (1) imply Vj;(1) < V. Also, in order to ensure that producer n € Ny (1) in
sector-h produces y;;, (instead of choosing autarky in the current stage-2), vy (n, 1)
must be bounded below by ¢;;,(y), implying ¢;(y) < Vi (1). Using this, Vi (1) < Vi,
and (2), we conclude that y € Y. Now consider part (ii). Because k;(y) is strictly
concave in y, Y is convex. Because W (y) is strictly concave in y, W (y) has a unique
maximum on Y. Parts (iii) and (iv) are obvious. For part (v), let Z = {i : x;(y°) = 0}
and Y’ = {y e R¥ .y, = y7 if i ¢ Z}. By part (iv), y° maximizes W(y)+>_,7 tiri(y)
for y € Y’ (1;8 are Lagrange multipliers), implying the desired property of y°. m

Using the argument in the proof of Proposition 1 (i), we see that W (y°) > W (y)

7



for any equilibrium allocation y # y° even when there is memory—everyone’s identity,

type realization in each period, and actions taken at any time are public information.

5 A symmetric two-state example

Here we use a simple example to illustrate how memory supports y° as an equilibrium
allocation, and then draw from this a few general lessons regarding how assets may
support y°.

Let I = 2, (011, p11,012, p12) = (022, paz, 021, p21), Ui(q,0) = Ua(q,0), Ci(q,p) =
Cs(q, p), and m;; = 0.5 all (4, 7). That is, sector-1 in state-1 is like sector-2 in state-2,
and vice versa; and each state occurs with probability 0.5 in each period. In particular,
there are sector-specific risks but there is no aggregate risk. To further simplify
matters, let y° = y*. Denote by d* the common value of d;(y*) and dy(y*), and by ¢*
the common value of ¢,(y*) and cy(y*). Then >_,, > B'mi;(t)d; (y*) = B(1 — B)~d"
so that y° = y* implies S(1 — B)~*d* > ¢*. Let u}, = un(y*), ¢ = cn(y*), and
df, = din(y*). Suppose ¢;; > ¢}, and that f is such that

81— ) d =" (3)

Suppose there is memory (and no nominal assets). It is useful to start with
the risk-sharing role of stage-1. If there were no stage-1, then y* could not be an
equilibrium allocation. For, the planner could only rely on sector-1 future net utility
gains 0.53(1 — B)~Y(d}, + d5;) = B(1 — B)~'d* (note di; = d},) to compensate the

stage-2 production cost c}; in sector-1. This requires
B(1—B)1d" > max{c}, c3 } = max{c]y, ¢, } = ¢y

But by (3), ¢}, > ¢}y and ¢* = 0.5(c}; + ¢f,) imply B(1 — )~ 1d* < c};.
Stage-1 provides the simplest way—transferable utility—to achieve risk sharing.
When the current period is not the first period, the current state is i, and the last

state is [, the planner can ask each sector-h consumer to surrender
(G — ) +BA—p)

units of goods at stage-1, and transfer 3~'¢}; to each sector-h agent who produced ¥,
in the last period. Consequently, the planner receives (1—3)~'d* and gives out 3~ 'c*.

By (3), these two amounts are equal. Any consumer who fails to surrender the suitable



amount at stage-1 and any producer who fails to produce the suitable amount at stage-
2 are punished by permanent autarky. With this arrangement, a sector-h producer’s
continuation value right after producing y3, is B[ ¢}, —0.5(1—8) td*+(1—8)"td*] =
cj, + 0.5¢*. Thus, permanent autarky is a sufficient threat to ensure that y, is
produced at stage-2. A sector-h consumer’s continuation value right after receiving
ys, at stage-2 is B[—0.5(1—8) " 'd*+(1— )~ 'd*] =0.5¢*, implying that the continuation

value when exiting stage-1 is uj, + 0.5¢*. Because
i (G — )+ B(L=B) T = ufy, — "+ B(L = B) 7" = up,

permanent autarky is a sufficient threat to ensure that v}, is surrendered at stage-1.

This simple risk-sharing arrangement reveals two general lessons. First, in order
to cover the production cost of the allocation at each state, the planner must extract
at each state at stage-1 the aggregate amount that matches the current and future net
utility gains of the allocation. Second, the planner needs to split the aggregate amount
between two sectors in a way that satisfies the individual participation constraint at
stage-1 in each sector. In the above example, at state-i, the aggregate extracted
amount is (1 — 8)~'d*, which is split into 0.5z} and 0.5u},. Needless to say, these two
conditions also apply when allocations are achieved using assets instead of memory.

With nominal assets, however, there is an additional constraint. Suppose, as will
be the case, that asset-h is only held by sector-h consumers and that each sector-h
consumer spends u, to obtain asset-h at stage-1. The additional constraint is that
the payment of asset-h made by a consumer at stage-2 must be sufficient to cover
the production cost c};,. But that depends on the expected rate of return of asset-h.
Those rates turn out to depend on how the aggregate extracted amounts are split
and on the asset-supply policy.

Now let us use the above discussion to see why some extreme policies may not
be optimal. With two currencies, the extreme policies are the policy that results in
floating exchange rates and the policy with fixed exchange rates. As shown in Zhu
[15], flexible exchange rates eliminate any across-sector risk sharing. Specifically, as
with memory but without stage-1, the planner can only rely on each sector’s own
future net utility gains to compensate its current production cost. Fixed exchange
rates, while allowing for risk sharing, introduce a different problem. For general
preferences, the fixed rate prevents currencies from being priced according to state-

specific fundamentals in the stage-1 market. Consequently, the planner cannot fully



utilize the economy-wide current and future net utility gains. In other words, with
no room for different assets to have different state-contingent rates of return, a fixed
exchange-rate regime cannot generate the pattern of returns necessary to implement
the optimal equilibrium allocation. This logic extends to the setting with currency
and bonds. With currency and bonds, the extreme policies are the policy that results
in a fixed currency-to-bonds ratio (across all states) and the policy that fixes the
price of bonds at unity (a zero net interest rate). The latter policy resembles fixed
exchange rates. The former resembles flexible exchange rates.

But what is the optimal policy among a continuum of policies between the ex-
tremes? Our main contribution is finding a way that jointly determines the optimal

(across-state) splits and policy, the splits and policy that support the allocation y°.

6 Rates of return of assets

Given the significance of rates of return of assets discussed above, our task here is
to express those rates in an equilibrium (for a given mechanism) by a pair of state-

dependent vectors.

Lemma 1 Given a mechanism (&, 1), suppose there exists an equilibrium.
(i) The ratio of the nominal quantities of the two assets depends on the current
state, but not on the date. Moreover, letting \; denote the state-i ratio of the nominal
quantity of asset-2 to the nominal quantity of asset-1, and z; denote the state-i amount
of stage-1 goods used to acquire all the assets held at the end of stage-1, we have
) AiiZi
Zi = T)\zé} and zp = m,

where zy, 1s the state-i amount of stage-1 goods used to acquire asset-k.

2

(4)

(ii) The expected gross rate of return of each asset depends on the current state
but not on the date. Moreover, letting ;. denote the state-i expected gross rate of
return of asset-k, we have
zj 1+ A&

v = B2 z 14+ Aiki oy
& zzi1+/\i0j

d o= B — )
e e zi 1+ Xioj &

(5)

where 0; = 1 in setting (a) (assets are two currencies) and o; = &; in setting (b)

(assets are currency and bonds).
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(i11) When i is the current state, the continuation value vy,(x) for a sector-h agent
holding the real portfolio x at the end of the period is vip(x) = B, TxYik + BEiAjn,

where Ajp, s a constant that does not depend on x.

Proof. When ¢t is the current period and ¢ is the current state, let m!, be the
nominal quantity of asset-k at the end of stage-1, and let ¢!, be the per unit price
of asset-k in units of the stage-1 good at the trading post that trades asset-k£ and
the stage-1 good. Thus, ¢!, m}, is the total amount of stage-1 goods used to acquire
asset-k at stage-1. Recall that the planner stands to exchange one unit of asset-2 for

& units of asset-1. By no-arbitrage at stage-1, & = ¢k, /¢l so

t ot — §1m§1 + ¢§2m52 (6)
R (mﬁz/mfl)fz

By Definition 1, ¢!, m!, does not depend on ¢ (strategies are Markov strategies). So

by (6), the ratio mt,/m!, of the nominal quantities of two assets does not depend on

t. By the definition of z;, z; = ¢lyml; + ¢lymly. Thus by (6) and the definition of A;,
Zi Aii%i

T T (7)

T+ A& T+ M,

This proves part (i). When the next state is j, the nominal value of all assets in units

t it t gt
My Q5 = and Mmoo =

of asset-1 in the coming stage-1 market is m}; + mi,o; = mf (1 + A\;o;) and the per
unit price of asset-1 is

Z3 Zi

t+1 Jj g
+1 _ ' <
P mb, +miyo;  mb (14 N\oj) (8)
By (7) and (8),
t+1 b
] 14+ NG i 14+ NE o
Ei(é]tl = Ez(ﬁ+—£) and E; JtZ = El(ﬁ—i_—gﬁ)
il zi 1+ Ao i2 zi 1+ Ao &

Thus, the expected gross rate of return of asset-k at state-i does not depend on the
date. In particular, we have (5). This proves part (ii). Part (iii) follows from the

linear preference of stage-1 goods. m

In what follows, we refer to the vectors A = (A,...,A;) and z = (z1,...,27) as
the characterizing vectors of an equilibrium. Relating to the discussion in section 5,
z; represents the amount of goods received by the planner from agents at stage-1.
Suppose only consumers hold assets and sector-h consumers only hold asset-h. Then

z;1 and z; represent the split of z; between consumers of the two sectors.

11



7 Showing that y° is the optimal equilibrium allo-

cation

By Proposition 1, y° is the unique optimal equilibrium allocation if it is an equilibrium
allocation. To show that y° is an equilibrium allocation, we proceed in three steps.
First, we construct the candidate characterizing vectors, A and z, and the candidate
asset-supply policy £, and show that the rates of return and the split of z (into z;
and z;) implied by those candidates have the desired properties. Second, we propose
the candidate trading protocol p that induces each sector-h consumer to spend 2z;,
at state-i.° Lastly, we use the above candidates to construct a strategy profile and
show that given the candidate mechanism, this profile is an equilibrium and that y°
is the outcome of this equilibrium. Throughout this section, we let ¢;, = cin(y°),
din = din(y°), ¢; = 0.5(¢i1 + ¢i2), and d; = 0.5(dy + djo).

7.1 Candidate z, A\, and &

The candidate z is determined by

Zi = dZ + Z Z ﬁtﬂ'l'j(t)dj. (9)

t>1

This is the natural candidate because SE;z; = SE;[d; + >, Y-, B'mj(t)dy] or

BEiz; = Y B'my(t)d;. (10)

t>1

That is, z fully utilizes the current and future net utility gains of the allocation y°.
The candidate A and £ are determined by

B Ni0jZj

Ci2 Zj
- = Ez RN
( 1+ )\io-j

—_— 11
Ci 1+ Ao (11)
and \

€ = (05da + BB, =5 ) (050 + BB ) (12)

Conditions (11) and (12) represent two optimality principles. The first is that the

ratio of the (expected) future real values of the two assets is proportional to the ratio

SEach individual consumer takes aggregates such as z; and its split as given when choosing his real
portfolio = at stage-1. The optimal x must agree with the aggregates in equilibrium. In particular,
if each sector-h consumer chooses x = x;;, at state-i, then x;np, = 22;p.

12



of the current production costs. The second is that the ratio of the current real value
of the two assets is proportional to the ratio of the continuation payoffs of agents who

hold the two assets. Of course, we need to show that there exists such (A, §).
Lemma 2 There exists (A, §) so that (11) and (12) hold for all i.

Proof. For setting (b) (currency and bonds), existence is obvious. Indeed, with
o; =1, (11) and (12) become

Ci2
A= — 13
- (13)
and SE \BE
£ (0.5, 5N 105 d 4 2P EiZ
Xi& = (0.5d;; + I )\i) (0.5d;2 + y ). (14)

1+
For setting (a) (two currencies), o; = ; so (11) and (12) become

. Nz
i Es : = cp By 15
CETING T TN (15)
and v
Ni& = (0.5d;1 + BE;,—=2—)"Y0.5d;5 + BE;—=71 ). 16
&= ( 1+ 8 1+Ai§j) (0.5d;2 + B 1+Aij) (16)

Let EZZJ(l + )\ifj)fl = (IEiZj and EZAlszj(l + )\ij)fl = (1 — a)E,'Zj. By (15),

acip = (1 —a)cy. So a = c;i(2¢;)"" and we have

Zi Cil/BEZ‘Z‘
Ei J - J 1
and e SE
iS5 %4 CioP L5z
Ei J7y J . 18
BRI - 2 (18)
By (17) and (18), (16) can be written as \; = g¢;/&;, where
gi— dia + (cia/ci) BE;2;
Codn+ (ci/ci)BE:z;
Substituting \; = ¢;/&; into (15) yields
E, ci1€;gi — ci2éi — (19)

§igi + &
To show that there exists £ satisfying (19), let A = {6 = (1, ...,6;) € RL : ST 6=
1} and for ¢ € [0, 1], define a mapping L¥ = (LY, ..., LY) on A by

LT (0) = p[d; + Ki ()] + (1 — ©)d;,
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where 4 is an interior point of A (i.e., §; > 0 all i) and

Ci15jgz‘ — Ci20;

0;gi + 0 o

K;(9) = E;
It suffices to show that L' has a fixed point. We claim that for any ¢, the mapping
L¥ does not have a fixed point on the boundary of A, i.e., if § € A has §; = 0 for
some ¢, then § # L¥(5). To see this, note that if §; = 0 then K;(J) > 0, which implies
L?(6) > 0. It follows from the claim that L' and LY have the same fixed-point index
(see Zeidler [13, Theorem 12.A, p. 535]). Because that index is 1 for L° (see Zeidler
[13, Definition 12.3.(A1), p. 529]), L' has a fixed point (see Zeidler [13, Proposition

12.4(2), p. 530]). This completes the proof. m

Lemma 3 Let (z,\, ) be as specified in (9), (11), and (12). Let zy, and v, be as
specified in (4) and (5).

(i) For each (i, h), Bzinyin > 0.5¢cy, and strictly only if yo = y;.

(ii) For each (i,h), zin = 0.5d;n, + BzinYin-

Proof. Fix i. As shown in the proof of Lemma 2, (11) implies

Zi CilﬁEiZ‘ /\ZO'Z CZ‘QBEZ‘Z'
Ei J - J d Ez 7 - J . 20
6 1+ )\in QCi an ﬁ 1+ )\Z‘O'j 2Ci ( )
Using y° € Y and (10), we have SE;z; > ¢;. So (20) implies
A2
; > 0.5¢;; and BE;——2"— >0.5¢;9, 21
B 1"—)\0'] ci at B +)‘i0j_ ciz ( )

which by (4) and (5) imply Bzinyin > 0.5¢;, all h. Now suppose 5zivin > 0.5¢;, for
some h. Then SE;z; > ¢;, which by Proposition 1 (iv) and (10), implies y{ = y;. To

continue, using (12), we have

o2
+0.5di + B 75%

1+ X6)(0.5d; E——L—
(14 N (0.5d, + 8 v e

v ) = 0.5d;1 + BE;

(22)

and g

+ Ai&i

23

NG ). (23)

Because the right-hand side of (22) is equal to d; + SE;z;, it follows from (9), (22),
and (23) that

)\iO'ij

(0.5diy + BE;

) = (14 2i&)(0.5di1 + PE;

)\io'j 1+/\O']

— 05dy + BE,— 24
1+&§ = 0:5du + PR (24)
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and

151~ —0. dz Ez 17 ]%)
T4 ng - Oode T AR EE

which by (4) and (5) imply z;, = 0.5d;, + Bzipyin all h. m

(25)

Lemma 3 (i) and (ii) establish two desired properties of the rates of return and
the split of z (into z;; and z;2) implied by (2, A, €) in (9), (11), and (12): the future
value of asset-h can cover the current stage-2 production cost at sector-h; and the

split can satisfy the individual consumer’s participation constraint at stage-1.

7.2 Candidate trading protocol u

The construction of the candidate trading protocol p uses the rates of return +;; and
vie and the asset’s real stage-1 values z;; and z;; implied by (z, A, £) in (9), (11), and
(12). As it turns out, when assets have those implied rates of return, p induces a
sector-h consumer to leave stage-1 with only asset-h whose real value is 2z;;, at state-i.

It is convenient to describe y in terms of the following problem.

Problem 1 The meeting outcome pp(x,2") = (yin(z, 2"), pin1 (x, 2"), pina(z, 2'))) as-
signed by u for a pairwise meeting in sector-h at state-i between a consumer carrying
the real portfolio z = (21, x2) and a producer carrying the real portfolio 2’ = (z}, )
is determined by a two-step optimization problem.

Step 1. Let a meeting outcome (in, Pin1, Dina) be determined as follows. Let
Dinke = 0 for k # h. If x5 > 2z, then

(Gins Pinn) = arg max Un(q, Oin) — Bpnvin (26)
subject to ¢ > 0, 0 < p, < xp, and —p;re(q) + Bpryin > 0; otherwise,
(in, Dinn) = argmax —Cy(q, pin) + Bpnyin (27)

subject to ¢ > 0, 0 < pj, < xp,, and Ux(q, 0i) — Bowyin > 0.
Step 2. Let pin(x,2") = argmax —Cy(q, pin) + B(p17vi1 + p2yi2) subject to ¢ > 0,
0 < pr <y all k, and Uy(q, Oin) — B(p1vi1 + p2yi2) = Un(Tin, Oin) — BDinkYin-

For Problem 1, suppose that the two agents in the problem are in an equilibrium
where the rate of return of asset-h is 7;,. The step-2 optimization ensures that

the outcome p;p(z,2") is in the pairwise core. This follows because this outcome
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maximizes the producer’s payoff conditional on not making the consumer worse off
than the trade (¥, Din1, Pine) obtained from the step-1 optimization and because
there is no restriction on which asset can be used to make payments. The step-1
optimization serves two purposes. First, by the restriction on the payment, it gives
the consumer a reward for offering the right asset for the meeting. Indeed, if the
consumer does not carry the right asset, then the step-1 outcome is always (0,0, 0)
so that the step-2 optimization gives the producer all the surplus from trade. This
aspect of the design of the trading protocol is borrowed from Zhu and Wallace [17] and
endogenizes no asset-substitution. Second, the step-1 optimization gives the consumer
an incentive to spend 2z;, at stage-1 on acquiring nominal asset-h. Indeed, if the
consumer carries only the right asset in the proper amount, the step-1 optimization
assigns all surplus to the consumer. This design is borrowed from Hu et al. [2] and
Hu and Rocheteau [3].”

Lemma 4 Let (2, )\, &) be as specified in (9), (11), and (12) and let p be the trading
protocol in Problem 1. Let x;1 = (22;1,0), ;2 = (0,224), and =}, = iy = (0,0).

(3) Yin(win, ¥35,) = Yy, and pin(Tin, v3) < 22 only if yg, = i,

(ii) For every (i,h),

o' =(z7,25)

Ty, € arg max  — Z ), — Crh(Yin(@in, '), pin) + B Z[xk + pink(Tin, 2°))] vk (28)
k k
(iii) For every (i, h),

Tip € arg max ) — Z T + Uh(yl-h(:zr, .T;-h), th) + 5 Z[l’k — pihk(x, l’;h))]’}/zk (29)
k k

r=(x1,x2

Proof. By Lemma 3 (ii), Sy < 1. For part (i), let ¢ = yin(zin, 2),) and
Ph = Dinn(Tin, Tjp,). By (26), Cn(q, pin) = Bpavin- By Byan < 1 and Lemma 3 (i),
Ung(q,0in) > Chg(q, pin) and py, < 22y only if ¢ = yi = yi,. If ¢ < yj, then
Ch(q, pin) = 2Bzin7in, which, by Lemma 3 (i), implies ¢ = y5,. By Bvin < 1, part
(ii) is immediate. For part (iii), without loss of generality, let us consider a sector-
1 consumer who carries a portfolio z = (z1,0) at the end of stage-1, and meets
a producer carrying z}, at stage-2. Let w(x;) denote the consumer’s stage-1 and

stage-2 payoff from carrying x = (z1,0). By part (i), yi1 (@1, 2};) =y} so

w(2z1) = —2zi1 + Ui(ygy, 0i1) + B[220 — pina (za, 2q) | vin + A4, (30)

"Problem 1 does not represent an extensive game form with two rounds of alternating offers but
it may be understood as a gradual bargaining problem (see O’Neill et al. [8]).
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where A is a constant independent of z; (see Lemma 1 (iii)) and 2z;1 > pii(z, o)
only if y2, = y};. To proceed, let us consider two cases of x; # 2z;.

Case 1: z; < 2z;3. Then w(zy) = —z1 + By + A. By (30) and Sy < 1,
w(zy) < w(2z;).

Case 2: x1 > 2z;;. If y = y3 then w(z) = w(2z;1) + (x1 — 2241)(—1 + Bvi1).
By (30) and Bvi, < 1, w(z1) < w(2z:). Now consider y5; # yf. Note that w(.) is

concave in [2z;1,00) and that there exists some Z; > 2z;; such that
w(xl) = —T + Ul(yil(x, ]J;l), 921) + A
with Cy(yin (z,2},), pin) = Pa1ya for xy € [22;1, 7). It follows that

W' (2z1) = =1+ ByaUig(y5, 0a)/Crg (i1, pin),

where w, (22;1) is the right derivative of w(.) at 2z;;. By Lemma 3, we have 282;;7;1 =

Cl(yfupz‘l) and 2z;; = Ul(yfh ti1) so

Ulq(yfl,911)/01(1(3151,/%1) < Ul(yfp@il)/cl(yfuﬂil) = 1/(5%’1)7

where the inequality uses U;(0,0;1) = C1(0,p;n) = 0, concavity of Ui(.,0;1), and
convexity of C'(., p;i1). Thus w!, (22;1) < 0, implying w(z1) < w(22;)

To conclude, the portfolio z;; dominates the portfolio (z1,0) with x; # 2z;. By
Bin < 1, the portfolio (x1,0) dominates (xy,z5) with x5 > 0 for any z;. This proves
part (iii). m

7.3 Equilibrium

Let us first use (&, A, z) in (9), (11), and (12) and p in Problem 1 to construct the
strategy profile F' in which all strategies are the same. The common strategy f in F
specifies the following actions for each agent when the current state is 7.

(P) The agent is a producer at stage-2 in sector-h. At stage-1, first adjust the
ratio of the nominal quantity of asset-2 to the nominal quantity of asset-1 to A; (by
exchanging assets with the planner). Next sell all the assets at the trading posts. At
round-1 of the stage-2 game, say yes; at round-2, say yes to a proposal (¢, p1, p2) iff

B> "ok = pink(in: )ik > Chlq. pin) — Cr(yin(z, 2'), pin).
K

where 2’ is the agent’s real portfolio and x is his partner’s.
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(C) The agent is a consumer at stage-2 in sector-h. At stage-1, first adjust the
ratio of the nominal quantity of asset-2 to the nominal quantity of asset-1 to \;
(by exchanging assets with the planner). Next, provided that m; is the aggregate
nominal quantity of asset-1 at the start of the period, submit orders in the trading
posts that result in the real portfolio x;, as if the realized prices of asset-1 and asset-2
were z;;m;+ and &zimy ', respectively. At round-1 of the stage-2 game, say yes; at

round-2; when the agent holds x and his partner holds 2/, propose p;(x,z’).

Lemma 5 Let (&, A, 2) be as specified in (9), (11), and (12) and let u be the trad-
ing protocol in Problem 1. Given the mechanism (&, ), the strategy profile F' is an

equilibrium whose outcome is y°.

Proof. Suppose all agents follow f all the time. Let ¢ be the current state.
Then, provided that my is the aggregate nominal quantity of asset-1 at the start
of the period, the realized prices of asset-1 and asset-2 at trading posts are z;m]"
and &zm ', respectively. Moreover, the consumers and producers who consume
and produce in sector-h enter stage-2 with the portfolios x;, and zf, (see Lemma 4).
Furthermore, when a consumer carrying = meets a producer carrying x’ in sector-h
at state-i, the outcome p;;,(x, 2") is in the pairwise core. Therefore, provided that all
other agents follow f all the time, no agent wants to deviate from f in any stage-2
pairwise meeting, and, in addition, by Lemma 4 (ii) and (iii), no agent wants to
deviate from f in stage-1. We conclude that F' is an equilibrium. By Lemma 4 (i),

the outcome of F'is y°. This completes the proof. m
Proposition 2 The allocation y° is the unique optimal equilibrium allocation.

Proof. By Lemma 5, y° is an equilibrium allocation. By Proposition 1 (i) and

(i), y° is the unique optimal equilibrium allocation. m

8 Optimal asset-supply policy

Let (£, A, 2) in (9), (11), and (12) be denoted (£°, A°, 2°). For some specifications of the
aggregate uncertainty and the discount factor, there are multiple optimal asset-supply
policies. Indeed, given the aggregate uncertainty, which determines the efficient al-

location y*, if 8 is sufficiently close to unity, then not only is y° = y*, but because
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the future net utility gains are more than sufficient to cover the current stage-2 pro-
duction cost, there are multiple (£, \, z) that differ from (£°, A°, 2°) and support y°.
Our interest is in the optimal policies when the planner is constrained by the future
net utility gains. To be precise, we introduce in the following lemma a reference
point of the discount factor for an arbitrary y, denoted B(y), such that the planner

is constrained when 3 = f(y°).

Lemma 6 Let 3;(y) be uniquely determined by 3, > [Bi(y)]'mi(t)d;(y) = ci(y).
Let B(y) = max; 5;(y).

(i) y €Y if and only if B > B(y).

(i) B> B(y°) only if y* =y~

(7ii) Let 5 = B(y°). Suppose (&, i) supports y° and let X and z be the characterizing

vectors of the corresponding equilibrium. Then
A& = N & (31)

for all i and
c(y°) — (E, Zj ),1El N0 ;%j
cn(y°) 1+ Noj 1+ Noj

for | € arg max; 3;(y°); moreover, if yo # yi all i, then (X&) = (X\°,£°).

(32)

Proof. For part (i), for the “if” part, suppose 5 > 5(y). Then &;(y) > 0 all 7 so
y € Y. For the “only-if” part, suppose 5 < 3(y). Then k;(y) < 0 for someisoy ¢ Y.
For part (ii), suppose by contradiction that 5 > (y°) while y° # y*. Without loss
of generality, suppose y7, < yi;. Let y be such that y;;, = y5, if (¢,h) # (1,1) and
y11 = Y3y + €, where € > 0. By 8 > [(y°), k1(y°) > 0 so y € Y when e is sufficiently
small. Clearly, W(y) > W (y°), a contradiction. For part (iii), first note that when
f = B(y°), z must equal 2°. Examining (22)-(25) in the proof of Lemma 3, one sees
that (31) is necessary for z = 2°. Also, by 8 = 8(y°), a(y®) = BEz; so (32) must
hold. Further suppose y; # yF all i. Then A and £ must satisfy (11) and (12) so
(6 = (°,€). m

We say that an asset-supply policy & is the simple policy if & = 1 all 7. Given
an exogenously fixed number v > 0, we say that £ is a fixed-asset-ratio policy if it
happens to result in an equilibrium with \; = v all i. For setting (a) (two currencies),
the simple policy represents a fixed exchange-rate regime, and a fixed-asset-ratio

policy represents a flexible exchange-rate regime.
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Proposition 3 Suppose = B(y°). Let | € argmax; 5;(y°).
(i) Suppose Usy(Ypy, Or2) / Cog(Yins p12) = Urg(yiy, 011)/ C1q(Yiy, pr1) implies

Us(y12, 012)/ Co (i pr2) 7 Ur(yin 0n)/Cr(yiys pin)- (33)

Then the simple policy is not optimal.
(i1) Let Cp, = 0Cy/0p and suppose C1,(ypy, pi1)Co2p(Ys, pi2) # 0. Then when the
shock vector {(0;1, pi1, Oia, piz) Y1, is outside a measure-zero set in RY | a fived-asset-

ratio policy is not optimal.

Proof. Suppose (&, 1) supports y° and let A and z be the characterizing vectors
of the corresponding equilibrium. For part (i), suppose by contradiction that ¢ is the
simple policy. Then by (31) and (12),

N = 050 (°) + 5 Br 2 I 05da(y) + 50°) ffil]. (34)
By (32) and (11), o)
G2y
= (35)

By (34), & = dio(y°)/di(y°). Then by (35), diz(y°)/din(y°) = ci2(y°)/cu(y°) or
equivalently,

Us (Y, 012) / Co (s p12) = Uiy, 01) /Cr(yiys pin)- (36)

But by Proposition 1 (v), we must have (33), which contradicts (36).
For part (ii), suppose £ is a fixed-asset-ratio policy. Then (32) becomes
VO ;24

OE — OE
Cl1(y) ll—i—vaj Cl2(y) ll—i—vaj

j

for some given v > 0. For setting (b) (currency and bonds), this leads to

UCu(yo) = Clz(yo), (37)

which can only hold for a measure zero set of {(0;1, pi1, 0i2, piz) }—, in R*. For setting
(a), the argument is somewhat indirect. Following the argument in Zhu [15], we can

show that with flexible exchange rates, y° is an equilibrium outcome only if

an(y®) = BE1zjn (38)

all h. But again, (38) can only hold for a measure zero set of {(0;1, pi1, 02, pio) }—; in
RY. m
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The assumption in Proposition 3 (i) is a specific property of preferences: if the
total utility-disutility ratios are equal across sectors in a state, then their marginal
ratios must differ. This property ensures that a simple policy cannot be optimal.
As shown in the proof of Proposition 3, for the simple policy to implement the op-
timal allocation, it must align the total ratios. But the optimal allocation itself has
aligned marginal rates. Thus, the assumption rules out optimality of the simple pol-
icy. It seems that the only specification of U, and C}, that violates the assumption is
multiplicative shocks and power functions; i.e., Uy(q,0) = 0¢* and Cy(q, p) = pq®.

In the proof of Proposition 3 (ii), (38) is the consequence of flexible exchange
rates indicated at the end of section 5. That is, the value of currency h is completely
determined by the current and future net utility gains of sector-h and, therefore,
sector-h can only rely on its own future net utility gains to compensate its current
production cost. With currency and bonds, there is only one nominal asset at the
start of each period, and the value of the nominal asset at that time is determined
by the economy-wide current and future net utility gains. But because the currency-
bond ratio is fixed exogenously, each sector can only use a fixed part of economy-wide

future net utility gains, resulting in (37).

9 Concluding remarks

We have found that complicated asset arrangements are helpful for two-sector Lagos-
Wright [5] economies subject to sector-specific shocks if the shocks are large enough
or if there is sufficient impatience. Suppose we consider a more general model in
which the linear good appears only periodically, rather than every period.® For a
simple policy and given shocks, it is evident that the discount factor consistent with
achievement of the efficient outcome increases as the period (between linear good
meetings) increases. Thus, it is very likely that the set of parameters for which a
simple policy is best shrinks as the period increases. In the limit, when the linear good
never appears, it is likely that there is no discount factor consistent with achievement
of the efficient outcome (see Wallace [12]). Finally, there is nothing special about
two sectors. A plausible surmise is that a version of the model with & sectors is best

served if there are k assets with k different state-specific rates of return.

8Hu and Rocheteau [3] have shown that the version with period two has a role for private credit
and no such role when the linear good appears at every period.
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