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Abstract

This paper draws quantitative implications for certain historical coinage

issues by adapting a fiat-money multiple-denomination model. The model is

parameterized to match some key monetary characteristics in late medieval

England. A small coin has a more prominent role than small change; thus

a shortage of small coins is very costly for poor people and when commerce

advances, it is very costly for all people. A debasement may effectively supply

substitutes to small coins in shortage but, when small coins are produced from

precious metals, debasements cannot be an ultimate solution because precious

metals are practically indivisible. So producing money from precious metals

may have a far greater cost untold by the literature—commercial advancement

would inevitably confer a prominent role on small coins but indivisibility of

precious metals restrains technical availability of those coins.

JEL Classification Number: E40; E42; N13

Key Words: Shortages of small coins; Commodity money; Debasement; Me-

dieval coinage

∗School of Finance, Central University of Finance and Economics. Email: paddyjin@gmail.com
†Department of Economics, Hong Kong University of Science and Technology. Email:

taozhu@ust.hk. The author acknowledges the support by RGC, Hong Kong under the grant
GRF647911.

1



1 Introduction

Debasements of coins were not rare in medieval Europe: when a type of coin was

debased, i.e., the precious-metal content in the coin was reduced, a person could

take bullion or old coins of the type to a mint in exchange for new coins. Often

debasements were implemented following the public complaints about inconvenience

caused by shortages of small coins; see Sargent and Velde [20]. Such complaints

were widely recorded, leading to an influential view that the small-coin provision is

a big problem for commodity money; see Cipolla [3], Redish [14], and Sargent and

Velde [20]. The complained inconvenience ought to mean that shortages of small

coins were costly for people, which may be odd to a modern person (a person living

in the Eurozone today would not be bothered much by the absence of one-cent or

five-cent coins even when he solely uses cash for daily transactions). So, how costly

would shortages of small coins be in history? If shortages of small coins were really

costly, may debasements alleviate shortages? To what extent did producing money

by commodity contribute to the small-coin provision problem? And, is there any new

lesson to learn from producing money by commodity in history? To address these

issues, we adapt the fiat-money multiple-denomination model of Lee et al. [8] for

commodity money. Lee et al. [8] emphasize two factors for agents to hold different

denominations: the need for change-giving and the burden for people to carry a bulk

of monetary objects. For these two ingredients, imagine a person in the Eurozone

insisting on holding one denomination in his wallet: choosing the 500-euro note, he

would encounter a change-giving problem; choosing the one-cent coin, he has to carry

a huge bag of cash even for grocery shopping.1

In our basic model, agents first visit the mint to adjust their portfolios in each

period. A portfolio consists of silver coins which do not yield direct utility and a

non-coin silver object called jewelry which yields direct utility to agents. Next agents

1In popular writings on the currency denomination, a “bulky wallet” is often used to describe
the burden for a person to carry many coins or notes. In a recent study, Chen et al. [2] find from
a survey by Bank of Canada that shoppers tend to choose payment methods to reduce the number
of monetary objects after transactions. The need for change-giving arises when one would face a
wide range of transaction values. The early partial-equilibrium denomination models start from a
given distribution of transaction values and call a denomination structure optimal if it minimizes
some statistic of the number of monetary objects to facilitate transactions; see Telser [26] and Van
Hove and Heyndels [28]. Building on the familiar matching model of Trejos and Wright [27] and Shi
[22], Lee et al. [8] depart from the partial-equilibrium analysis by endogenizing the distribution of
transaction values.
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are randomly matched in pairs. In a pairwise meeting, the seller produces goods in

exchange for coins with the buyer. The model is parameterized to match some key

monetary characteristics of late medieval England. During this period, per capita

holdings of silver in money varied but 35 grams may be a useful reference; pennies

were the most used coins while the coinage structure gradually expanded with addition

of coins larger and smaller than the penny; silver per penny declined over time but 1

gram is a good reference.

We find that adding coins always improves average welfare but large and small

coins contribute by much different ways. Large coins, i.e., coins larger than the penny,

are beneficial in reducing carrying costs (it is more costly for the buyer to carry 12

pennies than one shilling even though one shilling consists of the same amount of silver

as 12 pennies). Small coins, i.e., coins smaller than the penny, are beneficial because

they permit an agent to smooth his consumption by way of spreading his purchasing

power previously contained in a penny and used in one transaction into a few more

smaller coins; that is, small coins have a role more prominent than small change,

conforming well to that small coins were quite valuable in late medieval England.2

As such, shortages of small coins are very costly at least for poor agents; they are

so for all agents if the frequency of monetary transactions increases, a trend in the

commodity-money era. In the basic model, agents transact mostly with the smallest

coins when they trade frequently. Extending the basic model to allow the buyer and

seller to transact a bundle of goods over a span of time which may be terminated

stochastically, we find that small coins remain valuable but agents often transact with

large coins even when they trade frequently.

The basic model also provides a natural link between debasements and shortages

of small coins: debasing the penny alleviates shortages of small coins as it effectively

supplies small coins. Explicitly including debasements, we find that there are sizable

minting responses to debasements and new pennies cocirculate with old pennies by

weight (weights of coins are public information). Those patterns are at least quali-

tatively consistent with historical patterns documented by Rolnick et al. [17].3 But,

2In 1490s, a whole pig would cost 33 pennies and one penny could buy 3.73 kg of salt, 3.56 kg of
wheat, 1.20 kg of cheese, or 4.35 kg of wool; see Farmer [4, Tables 4, 7 ]. These numbers would not
be surprising if we match per capita silver with per capita M0, which is about GBP 1,200 today in
the U.K.

3It is not our position that all debasements in history were carried out because monarchs were
benevolent. Some debasements clearly had financial motives; see Spufford [24]. But a debasement
can successfully meet the monarch’s financial need only if it can attract people to the mint. In this
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as good as they may appear, debasements are not an ultimate solution to the small-

coin problem if small coins are produced from precious metals. A precious metal is

practically indivisible, i.e., physical properties of the metal imposes a practical lower

bound on the metal content in a coin—a low-fineness coin is easy to counterfeit and

a high-fineness but low-content coin is too small to carry; see Redish [14]. In fact,

a coin like the farthing (a quarter of penny) is largely impractical; the weight of a

high-fineness farthing is around 0.4 grams while the weight of a modern U.S. cent is

2.5 grams.

We are not the first to relate debasements with the small-coin provision in the

commodity-money era. In their influential monograph, The Big Problem of Small

Change, Sargent and Velde [20] build a cash-in-advance model in which debasements

are socially beneficial as they alleviate shortages in small coins as in our model. A

shortage in the Sargent-Velde model is a demand-side problem—agents economize

on holding pennies (small coins)—and, debasing the penny alleviates the shortage

because new pennies are assumed to cocirculate with old pennies by tale, enhancing

the incentive to hold new pennies. By contrast, a shortage in our model is a supply-

side problem and debasing the penny is a supply-side solution to the problem.

Producing money by commodity is conventionally regarded as a commitment de-

vice to prevent over-issuance of money in history. How much would the commitment

device cost? There is always an opportunity cost (silver can produce jewelry if not

used to produce coins); see Sargent and Wallace [21] and Velde and Weber [29]. In

addition, the mint’s operation cost is not negligible in Sargent and Velde [20] (the

zero minting fees eliminate all non-steady-state equilibria and, hence, resolve the

small-coin problem). In our model, minting is costless but there is a far greater cost

untold by the literature; that is, commercial advancement would inevitably confer a

prominent role on coins like farthings but indivisibility of precious metals restrained

the technical availability of those coins.4

In the literature, there are a few papers which apply matching models of money

to draw quantitative implications of indivisibility of precious metal; see, Kim and

Lee [6], Lee and Wallace [7], and Redish and Weber [15, 16]. Compared with these

regard, our model provides an explanation for why monarchs were capable of extracting seigniorage
through debasements when people were able to distinguish old coins from new coins.

4While it is not our point to argue that matching models are superior to cash-in-advance models
in modeling money, it seems fair to say that we are able to say things differently than Sargent and
Velde [20] because our model is better suited to accommodate indivisibility of a precious metal.
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papers, our paper calibrates the coinage structure more closely to the relevant history

and reveals the far greater cost due to indivisibility of precious metals by exploring

the meeting-frequency dimension.

The rest of the paper is organized as follows. We spell out the basic model

in section 2 and summarize basics for quantitative analysis in section 3. Findings

from the basic model and from the two extensions are presented in sections 4 and 5,

respectively. We discuss the key finding from our model and the related literature in

section 6. Section 7 concludes.

2 The model

This section contains the physical environment (including the monetary institution)

of the model, the definition equilibrium, and the intuition for the main findings that

are presented in subsequent sections.

2.1 Physical environment

Time is discrete, dated as t ≥ 0. There is a unit measure of infinitely lived agents. At

period t, first each agent knows his type at the period—he becomes a buyer or a seller

with equal chance. Next, agents visit a mint that produces monetary items, referred

to as coins, from a durable commodity, called silver. Silver has a fixed stock M ; it

can also be costlessly converted into and back from a product, called jewelry. There

are K types of coins; per unit coin k contains mk > 0 units of silver, 1 ≤ k ≤ K.

We refer to c(m) ≡(m1, ...,mK) as a coinage structure. A unit of jewelry contains

m0 units of silver. Agents choose their portfolios of wealth in silver at the mint by

the way described below. There is an exogenous upper bound B on each agent’s

silver wealth. Following their visit to the mint, agents carry coins (but not jewelry)

into a decentralized market where each buyer is randomly matched with a seller. In

each pairwise meeting, the seller can produce a perishable good that can only be

consumed by the buyer. Trading histories are private information, ruling out credits

between the two agents. In the meeting, each agent’s wealth portfolio is observed by

his meeting partner;5 the buyer makes a take-it-or-leave-it offer.

5This assumption is made by many applications of matching models of money, even when some
assets in the portfolios are not liquid and not carried into the meeting (e.g., bonds, capital). Without
this assumption, each agent’s gain-from-trade becomes private information, greatly complicating
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Let Yt =
∏K

k=0{0, 1, ..., B/mk} so y = (y0, ..., yK) ∈ Yt represents an agent’s

generic portfolio of wealth in silver at period t, meaning that the agent holds y0 units

of jewelry and yk units of coin k, k ≥ 1. Coins may exist at the start of period 0;

that is, m0π0(y0, 0, ..., 0) may be less than M , where π0 is the distribution of wealth

portfolios in silver among agents at the start of period 0. If the agent visits the mint

with y ∈ Yt, he can choose a portfolio from the set

Γt(y) = {y′ ∈ Yt :
K∑
k=0

mk(y
′
k − yk) = 0}. (1)

If the agent ends with y′ after minting and if he consumes qb ≥ 0 (when he is a

buyer) and produces qs ≥ 0 (when he is a seller) in the decentralized market, then

his realized utility at period t is

u(qb)− qs + v(m0y
′
0)− γ

K∑
k=1

y′k. (2)

The utility function u (for goods) and v (for jewelry) satisfy u′, v′ > 0, u′′ < 0, v′′ ≤ 0,

v(0) = u(0) = 0, and u′(0) = ∞; here we follow Velde and Weber [29] to let silver

yield direct utility only when it is held for non-monetary use, which permits us to

examine how the stock of money would depend on the coinage structure c(m).6 In

(2), γ > 0 is the disutility to carry per unit of coin to the decentralized market. The

carrying cost is a parsimonious term: it covers the physical cost of moving coins, the

time cost of counting coins in making payments, the mental cost of keeping coins

from losing, etc. Different components of the per-unit carrying cost may vary with

the size of coin differently: the physical cost may be proportional to the size, the

time cost may be invariant to the size, and the mental cost may be even inversely

proportional to the size (according to Redish [14], one important reason that the size

of coin cannot be too small is that such a coin is easily lost). Here we follow Lee et

al. [8] to let all denominations have the same per unit carrying cost.7 Each agent

maximizes expected discounted utility with discount factor β ∈ (0, 1).

A key statistic in our analysis is the cost due to shortages of coins. The cost is

determination of terms-of-trade in the meeting.
6An alternative approach to commodity money is to not separate monetary and nonmonetary

uses; see, e.g., Wallace and Zhu [33].
7A more general formulation is that the per-unit carrying cost is coin-specific while the total

carrying cost is increasing in the number of coins; such a formulation would not affect our results.
Also, we follow Lee et al. [8] to assume that the carrying cost only applies to the trip toward the
decentralized market; no result would hinge on this assumption.
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measured by adding some coins into the present structure. Say, the coin mK′ with

K ′ = K + 1 is added to the present structure c(m) = (m1,m2, ...,mK). The cost of

the complete shortage of mK′ may be measured by the difference in average welfare;

average welfare for a coinage structure is the average expected lifetime utility for

the steady state (as defined below) associated with the coinage structure. But the

steady-state comparison may not be sufficient to tell how inconvenient it was for an

individual person in history when he complained about shortages of some coins. For

such a person, the complaint was likely based on comparing his real experience from

transacting with available coins to a hypothetical scenario where coins in shortages

were all available to him. The real experience corresponds to what an agent in our

model may feel under the steady state associated with c(m) given his current wealth

status y; the hypothetical scenario corresponds to what the agent may feel in the

equilibrium (as defined below) following a sudden switch of the coinage structure

from c(m) to the one with mK′ being added.

We formulate the sudden change in the coinage structure as an unanticipated shock

to the coinage structure. In the basic model, a shock is referred to as a structure shock;

that is, it adds some types of coins into the pre-shock coinage structure (section 5

introduces another sort of shock to the coinage structure, referred to as a debasement

shock). In the post-shock economy, the set of individual portfolios Yt and the set of

portfolios feasible from minting Γt(y) for t ≥ 0 are defined by the same way as in the

pre-shock economy for a c(m) distinct from the pre-shock economy. Silver contents

in all coins are public information in the pre-shock and post-shock economies all the

time.

2.2 Equilibrium

We describe equilibrium conditions by a same set of constructs for the pre-shock

and post-shock economies, with the understanding that the suitable Yt and Γt(y) are

applied. For each period t, the set of constructs consists of three probability measures

on Yt, denoted πt, θ
b
t , and θst , and three value functions on Yt, denoted wt, h

b
t , and

hs
t . Here πt(y) is the fraction of and wt(y) is the value for agents holding the wealth

portfolio y before agents know their period-t types; and θat (y) is the fraction of and

ha
t (y) is the value for buyers (sellers, resp.) holding y right after visiting the mint at t

when a = b (a = s, resp.). As defined below (see (8) and (9)), ha
t (y) does not include
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the period payoff from jewelry. Thus, in terms of ha
t , the portfolio-choice problem for

an agent holding y at the mint is expressed as

gt(y, h
a
t ) = max

y′∈Γt(y)
ha
t (y

′) + v(m0y
′
0), a ∈ {b, s}; (3)

that is, the agent chooses a portfolio in the mint to maximize the sum of the post-

minting value ha
t (y

′) and the period payoff v(m0y
′
0) from jewelry. In terms of wt+1,

the trade in a pairwise meeting between a buyer with yb and a seller with ys solves

the maximization problem

ft(yb, ys) = max
(q,l)

u(q) + βwt+1(yb − l) (4)

subject to

−q + βwt+1(ys + l) ≥ βwt+1(ys) (5)

and l ∈ L(yb, ys), where

L(yb, ys) = {l ∈ Yt : l = lb − ls, lb, ls ∈ Yt, lb,0 = ls,0, (6)

and ∀k ≥ 1, lb,k ≤ yb,k, ls,k ≤ ys,k}

is the set of feasible coin transfers between the buyer and the seller. Here, l is the

vector that represents the payment (in different coins) made by the buyer. The

constraint (5) says that the buyer has all the bargaining power. As it is optimal for

the buyer to offer (q, l) such that the seller’s participation constraint in (5) is binding,

one may infer the purchasing power of i units of coin k as β[wt+1(ys + imk)−w(ys)]:

the purchasing power of one unit of coin k therefore is equal to the purchasing power

of mk/mk′ units of coin k′ if mk/mk′ is an integer. In (6), lb,0 = ls,0 says that jewelry

cannot be used for the payment; lb,k ≤ yb,k says that the buyer’s transfer of coin k (as

part of his payment to the seller) cannot exceed his holdings of coin k; and ls,k ≤ ys,k

says that the seller’s transfer of coin k (as part of her change-giving to the buyer)

cannot exceed her holdings of coin k.

Given hb
t and hs

t , the function wt satisfies

wt(y) = 0.5g(y, hb
t) + 0.5g(y, hs

t). (7)

As implied by the maximization problem in (4), the function hs
t satisfies

hs
t(y) = βwt+1(y)− γ

K∑
k=1

yk. (8)
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Given wt+1 and θst , the function hb
t satisfies

hb
t(y) =

∑
y′

θst (y
′)ft(y, y

′)− γ
K∑
k=1

yk. (9)

Given πt, the measure θat satisfies

θat (y
′) =

∑
y

πt(y)λ
a
1(y

′; y), a ∈ {b, s}, (10)

for some λa
1(.; y) ∈ Λ1[y, h

a
t ], where Λ1[y, h

a
t ] is the set of measures that represent

all randomizations over the optimal portfolios for the maximization problem in (3).

Given θbt and θst , the measure πt+1 satisfies

πt+1(y) =
∑
(yb,ys)

θbt (yb)θ
s
t (ys)[λ2(y; yb, ys) + λ2(yb − y + ys; yb, ys)] (11)

for some λ2(.; yb, ys) ∈ Λ2[yb, ys, wt+1], where Λ2[yb, ys, wt+1] is the set of measures that

represent all randomizations over the optimal transfers of coins for the maximization

problem in (4) and λ2(y; yb, ys) is the proportion of buyers with yb who leave with y

after meeting sellers with ys.

Definition 1 In each of the pre-shock and post-shock economies, a monetary equilib-

rium is a sequence {wt, θ
b
t , θ

s
t , πt+1}∞t=0 that satisfies (3)-(11) all t and

∑
{y∈Yt:yk=0,k≥1}

m0[θ
b
t (y) + θst (y)] < 2M some t for a given π0 and for the applicable Yt and Γt(y);

a monetary steady state is a tuple (w, θb, θs, π) such that {wt, θ
b
t , θ

s
t , πt+1}∞t=0 with

(wt, θ
b
t , θ

s
t , πt) = (w, θb, θs, π) all t is a monetary equilibrium.

For existence, we maintain a simple sufficient condition

B −m− 0.5M

B −m
u

[
β(v(B)− v(B −m))

1− β

]
> v(B) +

β

1− β
[v(B)− v(B −m)] + γ,

(12)

where m ≡ mink≥1mk is the silver content in the smallest coin in c(m). The condition

in (12) says that m is not too close to the upper bound B on silver wealth and that

compared with some utility from consuming produced goods (the u term), the cost γ

of carrying a coin is not too great, and the utility from jewelry (the v terms) is much

limited; notice that there is no monetary equilibrium if m = B, γ is sufficiently great,

or the jewelry utility is sufficiently large.

Proposition 1 In each of the pre-shock and post-shock economies, there exists a

monetary equilibrium for a given π0 and there exists a monetary steady state.

Proof. See the appendix.
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2.3 Intuition

Our model is a straightforward adaption of the fiat-money model of Lee et al. [8] for

commodity money. As noted above, the model of Lee et al. [8] and earlier partial-

equilibrium models emphasize change-giving and the carrying cost as the necessary

ingredients to induce people to hold different denominations. What we are going to

demonstrate is that when different denominations are demanded, some denominations

can be quantitatively far more important than others for welfare and, in particular,

small coins are the more important denominations in the commodity-money era be-

cause their role goes beyond change-giving.

The following is the relevant intuition. The basic problem for an agent in our

model, as the basic problem of agents in Bewley models and as in other models

with decentralized markets (e.g., Molico [12], Menzio et al. [11], and Jin and Zhu

[5]) is an intertemporal-allocation problem. In our model, as in other denomination-

structure models, monetary objects must be indivisible; otherwise, change-giving is

not a concern at all and agents only need the largest coin—they can divide the coin

for payments when necessary.

Indivisibility can have strong influence on the intertemporal allocation. To sim-

plify the matter, let money be fiat money and let us leave aside the carrying cost.

Moreover, let us abstract away dependence of a buyer’s spending on the wealth of

his potential meeting partner and imagine that each buyer can obtain λx amount of

goods by spending x amount of (nominal) wealth for some constant λ. Denote by

x(z) the optimal current spending of a buyer when he starts the date with wealth

z. Fix z > 0; define the sequence κ(z) = {xn} by setting z1 = z, xn = x(zn), and

zn+1 = zn − xn. Then we have υ(zn) = 0.5[u(λx(zn)) + βυ(zn+1)] + 0.5βυ(zn), where

υ is the value function defined on the start-of-date wealth before one knows his type,

implying

υ(zn) =
0.5

1− 0.5β
u(λxn) +

0.5

1− 0.5β
βυ(zn+1). (13)

(The value function w in section 2.2 is defined on the set of portfolios; because minting

is costless, one may equivalently define the value function on the set of wealth levels.)

By (13) and the definition of κ(z),

υ(z) =
∞∑
n=1

(
0.5

1− 0.5β
)nu(λxn). (14)

By (14), an agent with wealth z can obtain the expected discounted utility υ(z) if he
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does not produce anything when he becomes a seller and if he spends xn at the nth

time when he becomes a buyer; that is, the sequence κ(z) of spendings is an optimal

solution to the agent’s intertemporal allocation problem.8

To proceed, let us first use divisible money as the reference. With divisibility, the

optimality of κ(z) implies the familiar intertemporal consumption-smoothing condi-

tion

u′(λxn) = (
0.5

1− 0.5β
)u′(λxn+1). (15)

For CRRA functions, (15) leads to xn+1 = ϕ( 0.5
1−0.5β

)xn, where the function ϕ satisfies

ϕ′ > 0 and ϕ(1) = 1. It follows that x1 = z/L, where L =
∑

n[ϕ(
0.5

1−0.5β
)]n, which

determines the divisible-money optimal sequence κ(z) of spendings.

Now let monetary objects be indivisible and let ξ denote the size of the smallest

denomination. Suppose ξ, z, and L are all rational numbers. Given N , there exists

ξN such that if ξ ≤ ξN then the agent with z can follow the divisible-money optimal

sequence κ(z) of spending for at least N times. Thus, when N is sufficiently large

and ξ ≤ ξN , indivisibility has much limited influence on the agent’s expected lifetime

utility thanks to discounting. (Needless to say, this is a partial-equilibrium argument

as it treats the divisible-money value function as the indivisible-money value function.

Zhu [34] establishes a general-equilibrium result that when the smallest denomination

can be arbitrarily small, the allocation with indivisible money can be arbitrarily close

to the allocation with divisible money.)

But what if ξ is not small, say, ξ/z > 1/L (implying ξ > x1)? Then the spending

that best approximates the divisible-money sequence κ(z) is xn = ξ for n ≤ z/ξ, i.e.,

the agent only spends ξ when he is a buyer. Thus, indivisibility may have substantial

influence—the agent may consume too much each time (with respect to the divisible-

money case) and use up money too quickly so that consumption becomes far more

unsmooth than the divisible-money counterpart.

A few remarks are in order. First, so far we consider the influence of indivisibility

on an agent with an arbitrary wealth level z. The average wealth level is a suitable

wealth level to examine the overall influence of indivisibility on the economy; that

8There is an alternative optimal solution which requires the agent to produce as a seller; the agent
actually acts according to this alternative solution in equilibrium (otherwise when he is a seller, the
buyer he meets cannot consume). There are two optimal solutions because in each pairwise meeting,
the buyer takes all surplus-from-trade, leaving the seller indifferent between producing and not
producing. For our purpose, the solution κ(z) is convenient to illustrate how indivisibility affects
the agent’s intertemporal allocation.
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is, the ratio of ξ to the average stock of money M measures the overall degree of

indivisibility. Second, indivisibility is not a problem for fiat money. Indeed, whatever

ξ is, fiat money has the freedom in choosing M so that ξ/M can be arbitrarily small.

Third, indivisibility is a problem for the historical commodity-money system because

it encounters both a constraint in M and a constraint in ξ; the latter constraint stems

from the practical lower bound on the metal content per coin. Fourth, paying by

lotteries can make the influence of indivisibility less substantial. Lotteries, however,

would not be a feasible solution for the medieval people. Fifth, even when indivisibility

has substantial influence, large coins are demanded by agents as long as carrying coins

is costly.

Last but not least, the size m1 of the smallest denomination matters more if the

utility function u is more concave or the meeting frequency meeting frequency F is

higher. Indeed, given m1, with more curvature in the utility function, there is a

larger loss in welfare due to the constraint imposed by indivisibility on consumption

smoothing (on the flip side, a reduction in m1, a debasement, has a greater gain

in welfare). Also, notice that one period in the model is the span of the calendar

time that covers one round of trade, and a higher trading frequency means that n

periods correspond to a shorter span of the calendar time; the annual discount factor

being fixed, given m1, running out of money after n periods (the best approximation

of indivisible coins to the divisible-money consumption smoothing) becomes more

costly for the agent (on the flip side, a reduction in m1 has a greater gain in welfare).9

Ultimately, how substantial the influence of indivisibility may be is a quantitative

issue. As such, our analysis below is quantitative.

3 Basics for quantitative analysis

This section summarizes basics for our quantitative analysis.

9A higher F under a constant β is quantitatively equivalent to a higher β under a constant F .
When F is fixed, a higher value of β leads to a higher value of 0.5

1−0.5β in (15) and, hence, implies a

lower value of x1 in the divisible-money κ(z). A lower value of divisible-money x1 means that before
running out of money, the difference between the indivisible-money spending and the divisible-money
spending becomes larger; this enlarged difference enlarges the welfare cost. By this reasoning, if we
introduce persistence to the idiosyncratic shock (i.e., if one is a buyer today, then the probability to
be a buyer tomorrow is greater than 0.5), then the welfare loss shall be enlarged (as 0.5 in 0.5

1−0.5β is

replaced with a larger number).
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3.1 Parameterization

The most important parameters in our analysis are the average silver wealth M and

the coinage structure c(m). We choose those parameters to approximate relevant

monetary characteristics of the late medieval England. During this period, Eng-

land gradually expanded its coinage structure by adding silver coins larger than the

penny (d), namely, the halfgroat (2d), groat (4d), and shilling (12d), and by adding

coins smaller than the penny, namely, the halfpenny (1/2d) and farthing (1/4d). In

our analysis, we mainly work with coinage structures that represent this expansion.

Specifically, we expand the single-coin structure with the penny in one direction by

adding the halfgroat, groat, and shilling sequentially and in another direction by

adding the halfpenny and farthing. Together with the complete structure that con-

sists of all those coins, we have seven representative structures: (1) (single), (2, 1),

(4, 2, 1), (12, 4, 2, 1), (1, 1/2), (1, 1/2, 1/4), and (12, 4, 2, 1, 1/2, 1/4) (complete).

The silver content per penny declined over time in history but 1 gram is a good

reference. One unit of silver in the model corresponds to 1 gram. So in a coinage

structure c(m), 1/2 represents the halfpenny, 1 represents the penny, 2 represents the

halfgroat, and so on. We set the silver content in jewelry m0 at 60; we have in mind

that a regular tablespoon weighs around 60 grams in making this choice. We set the

average silver holdings M at 35. With our choices of m0 and M , agents turn out to

hold most of the silver in coins so the per capita silver in money falls in the mid of

the estimated range for England in the fifteenth century (see Allen [1, p. 607]). We

set B = 3M in our analysis. This upper bound on wealth in silver is not restrictive

in that it is reached by a negligible measure of agents (the measure is bounded above

by 10−13 in steady states for our chosen parameters).

We set the annual discount factor at 0.9, u(x) = x1−σ/(1− σ) with σ = 0.5, and

v(x) = εx/F . The value of the annual discount factor, forms of u and v, and the value

of σ are consistent with those in the related studies based on similar models (e.g.,

Lee and Wallace [7] and Redish and Weber [15]). The low annual discount factor has

little influence on our main results and, in particular, as is clear below, a higher value

of the annual discount factor would only imply a higher welfare cost of shortages of

small coins. When people have F rounds of pairwise meetings per year, the discount

factor is β = 0.91/F . We use F = 12 as the baseline value but it should be noted that

many results presented below use higher values of F .

The literal interpretation of jewelry is luxury goods. While there is no obvious
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reference for the marginal utility of luxury goods, it seems reasonable to be conser-

vative by choosing a small value. Indeed, in our model jewelry covers all silver in

non-monetary use and, in history much of silver in this use was hoarded. But if ε

is too small, the stock of money moves little following a shock to the coinage struc-

ture. We set ε = 0.01. With this value, one unit of silver in jewelry yields a utility

equivalent to 0.04% of the steady-state per capita consumption per round and we

can observe dependence of the stock of money on the coinage structure. As ε, there

is no obvious reference for γ. But smaller values for γ seem more preferable than

larger; apparently, one exerts tiny effort to carry a coin. We guide our choice of γ by

examining values that are sufficiently close to zero (in both absolute and consumption-

equivalent terms) and generate sufficient post-shock minting responses. We present

our results at γ = 10−5. This value is equivalent to 0.001% of the steady-state per

capita consumption per round.

We do the robustness check. The main patterns of the presented results hold when

σ varies from 0.5 to 1.5, ε varies from 0.001 to 0.05, γ varies from 10−4 to 10−6, and

when v has some strict curvature. On a general level, the intuition in section 2.3 may

help us see how a change in a real parameter affects our main result that small coins

may be the more important denominations. First, increasing σ adds more curvature

to the utility function, which, as noted in section 2.3, leads to more loss in welfare.

Second, increasing ε reduces the amount of silver for the monetary use and, hence,

makes the shortage of the small coins a more severe problem. Lastly, increasing γ

increases the demand for the large coins but shall only marginally affect the welfare

loss due to the shortage of the small coins. These are all consistent with what we find

in the robustness check. To save the space, we only report part of the check for σ in

Appendix C.10

3.2 Computational procedure

We compute steady states for different coinage structures and transitional equilibria

following unanticipated shocks. Proposition 1 does not tell uniqueness of the mone-

tary steady state in either the pre-shock or post-shock economy. By experimenting

over a variety of initial conditions, we find that our algorithm that solves a steady

state (see Appendix B.1) always converges to the same steady state for each c(m)

10The robustness check also covers some coin-specific specification of the carrying cost (see footnote
7). Unreported check results are available subject to request.
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given other parameter values (of course, our numerical experiment is not a formal

proof). As such, we refer to this steady state as the steady state for c(m).

Given the steady state (w, θb, θs, π) for c(m), we compute a monetary equilibrium

{wt, θ
b
t , θ

s
t , πt+1}∞t=0 following a shock on c(m) that starts with π0 = π and approaches

the post-shock monetary steady state. In our algorithm that solves such an equilib-

rium (see Appendix B.2), we approximate limt→∞(wt, θ
b
t , θ

s
t , πt) = (w′, θb′, θs′, π′) by

letting wT = w for a sufficient large T . We cannot prove that (w′, θb′, θs′, π′) is locally

stable;11 even if it is, we cannot prove that there exists {wt, θ
b
t , θ

s
t , πt+1}∞t=0 with the

desired limit property. In fact, for some parameter values outside the aforementioned

ranges, our algorithm cannot converge if π0 is far away from π′.

3.3 Statistics

Let {wt, θ
b
t , θ

s
t , πt+1}∞t=0 be an equilibrium {wt, θ

b
t , θ

s
t , πt+1}∞t=0 given a coinage structure

c(m). Let (qt(yb, ys),lt(yb, ys)) be the optimal solution to the problem in (4) that

determines the trading outcome between the buyer with yb and the seller with ys; for

this meeting, the net payment is

dt(yb, ys) =
K∑
k=1

lk,t(yb, ys)mk, (16)

and we define the price as

pt(yb, ys) = dt(yb, ys)/qt(yb, ys). (17)

At period t, we define average meeting output as

Qt =
∑
(yb,ys)

θbt (yb)θ
s
t (ys)qt(yb, ys), (18)

the average meeting payment as

Dt =
∑
(yb,ys)

θbt (yb)θ
s
t (ys)dt(yb, ys), (19)

the average meeting price as

Pt =
∑
(yb,ys)

θbt (yb)θ
s
t (ys)pt(yb, ys), (20)

11Local stability of (w′, θb′, θs′, π′) means that starting from any initial distribution π0 in a neigh-
borhood of π′, there is an equilibrium {wt, θ

b
t , θ

s
t , πt+1} with limt→∞(wt, θ

b
t , θ

s
t , πt) = (w′, θb′, θs′, π′).
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the average circulation volume of coin k in silver as

CVk,t = [
∑
(yb,ys)

θbt (yb)θ
s
t (ys) |lk,t(yb, ys)|]mk, (21)

and the stock of coin k in silver as

STk,t = 0.5[
∑
yb

θbt (yb)yb,k +
∑
ys

θst (ys)yb,k]mk. (22)

Let xa
t (y)∈ Γt(y) be the optimal solution to the portfolio-choice problem in (3); then

the minting volume of coin k in silver of an agent in type a ∈ {b, s} holding y is

mvat,k(y) = max{xa
t,k(y)− yk, 0}. (23)

At period t, we define the average minting volume of coin k in silver as

MVt,k = 0.5
∑
y

πt(y)[mvbt,k(y) +mvst,k(y)] (24)

If the equilibrium is a steady state, then objects in (16)-(24) with the subscription t

dropped represent the corresponding steady-state values.

The most important statistics for our study pertain to inconvenience or costs due

to shortages in some coins. We use the average expected discounted utility

W = π · w

to measure average welfare in the steady state (w, θb, θs, π) for a coinage structure

c(m). When comparing the steady state (w, θb, θs, π) for some c(m) with the steady

state (w′, θb′, θs′, π′) for another c(m′), we use

∆w ≡ W ′/W − 1 (25)

to measure the change in average welfare. If the set of coins in c(m) is a subset of the

set of coins in c(m′), then ∆w provides a measurement of average inconvenience or

costs due to a complete shortage of coins in c(m′) but not in c(m). Below we report

along ∆w the consumption equivalent ∆c, i.e., the average change in consumption

that equates average welfare in the two steady states.

The statistic ∆w may not be sufficient to tell how inconvenient it was for an indi-

vidual person in history when he complained about shortages of some coins. Following

the discussion that motivates the structure shock in section 2.1, the real experience of

the person who complained about shortages in history corresponds to what an agent

in our model may feel under the steady state (w, θb, θs, π) given his current wealth

status; and the hypothetical scenario for the complaining person corresponds to what
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the agent may feel in the equilibrium {wt, θ
b
t , θ

s
t , πt+1}∞t=0 following the structure shock

that turns c(m) into c(m′); and the inconvenience of the complaining person corre-

sponds to the change in an individual agent’s welfare following a structure shock,

i.e.,

δ (z) ≡ v0 (z) /v (z)− 1, (26)

where z is the agent’s pre-shock wealth in silver and (v0(z), v(z)) = (w0(y), w(y)) if

z is equal to the amount of silver in portfolio y. Complementary to ∆w, the statistic

{δ(z)}z offers a more detailed picture about welfare costs due to shortages of relevant

coins. Different from the distribution of consumption that is used to compute the

average steady-state expected discounted utility, any distribution of consumption

that is used to compute the individual expected discounted utility in a steady state

is nonstationary; as such, it is not obvious how to define a consumption equivalent

for δ(z) and we choose not to provide one.

4 Comparing coinage structures

This section compares the seven representative coinage structures indicated in section

3.1. Section 4.1 provides baseline steady-state statistics. Section 4.2 analyzes different

welfare roles of small and large coins. Section 4.3 illustrates the asymmetric effects

of the meeting frequency on importance of small and large coins. Section 4.4 uses

the statistic δ(z) (see 26) derived from the transitional equilibrium to illustrate the

individual cost caused by shortages of small coins.

4.1 Baseline steady-state statistics

Table 1 reports the steady-state average meeting output Q, payment D, and price P

for each of the seven representative coinage structures; Table 2 reports the average

circulation volume CV , stock ST , and minting volume MT for each coin in those

structures; the meeting frequency F is at the baseline value 12. Table 1 also reports

the change ∆w in average welfare and the consumption equivalent ∆c with the single-

coin structure as the base.

Two main findings stand out in Table 1. First, adding a new coin to an existing

structure improves average welfare W . This finding applies to other values of F . A

partial-equilibrium rationale for the finding is that adding a new coin at least weakly
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c(m) D P Q ∆w ∆c

single 1.040 0.902 1.193 − −
(2,1) 1.040 0.902 1.194 0.03% 0.03%

(4,2,1) 1.040 0.901 1.194 0.05% 0.04%

(12,4,2,1) 1.040 0.901 1.194 0.06% 0.05%

(1,1/2) 1.040 1.077 0.979 1.39% 1.23%

(1,1/2,1/4) 1.107 1.170 0.958 1.67% 1.47%

complete 1.105 1.168 0.957 1.73% 1.53%

Table 1: Steady-state statistics.

c(m) 1/4d 1/2d 1d 2d 4d 12d Jewel Total

single

ST 34.93 0.071 35

CV 1.040 1.040

MV 0.007 0.007

(2,1)

ST 1.000 33.93 0.072 35

CV 0.960 0.080 1.040

MV 0.250 0.256 0.506

(4,2,1)

ST 1.000 1.182 33.75 0.072 35

CV 0.969 0.071 0.019 1.059

MV 0.251 0.394 0.354 0.999

(12,4,2,1)

ST 1.000 1.182 3.935 28.81 0.072 35

CV 0.972 0.068 0.013 2e−11 1.053

MV 0.252 0.394 0.453 0.309 1.408

(1,1/2)

ST 0.420 34.58 7e−4 35

CV 0.092 0.948 1.040

MV 0.101 0.102 0.203

(1,1/2,1/4)

ST 0.250 0.389 34.36 0.001 35

CV 0.118 0.063 0.957 1.138

MV 0.066 0.134 0.140 0.341

complete

ST 0.250 0.386 0.894 1.006 4.175 28.29 0.001 35

CV 0.122 0.110 0.866 0.088 0.014 7e−5 1.200

MV 0.065 0.143 0.332 0.349 0.464 0.366 1.720

Table 2: Circulation, stock and minting volumes.
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improves welfare because an individual agent can choose to not hold the new coin

if it does not help him. There is no obvious general-equilibrium force that would

overturn the rationale and we find no counter example when experimenting with

other structures with hypothetical coins.12 Secondly, coins smaller than the penny

improve average welfare W much more than large coins, i.e., coins larger than the

penny; the asymmetry between large and small coins applies to D, P and Q. To

be sure, both large and small coins are used in transactions after introduced even

though pennies dominate in the circulation volume CV and have the fastest velocity

measured by CV/ST ; see Table 2.

There are a few notable observations from Table 2. First, while the stock of jewelry

is not sensitive to addition of large coins, it is to addition of small coins, a sign that

adding small coins makes the use of silver as money a more attractive option. Second,

jewelry and the largest coin tend to absorb more than 90% of silver not used for the

transaction purpose. This proportion does not vary much when we vary m0 from 60

down to 30 but the split between the largest coin and jewelry may vary substantially

(agents choose jewelry as the store of value if they can afford it). Third, a larger

minting volume need not imply that the coin is more useful in transactions. Indeed,

while large coins contribute to more than 70% of the total minting volume, they

facilitate less than 3% of the total transaction values.

To see the spending patterns, we conduct the following simulation under the struc-

ture (12, 4, 2, 1) for an agent whose initial wealth w0 is the average wealth (35d) and

who turns into a buyer in all future pairwise meetings. At the first period, the agent

carries into the decentralized market all types of coins: two shillings (12d), two groats

(4d), one halfgroat (2d) and one penny (1d). Depending on the wealth status of the

seller in his pairwise meeting, the agent may spend either one penny (with probability

99.93%) or one halfgroat (with 0.07%). At the second period, if he did not spend the

half groat in the first period, then mints the halfgroat into two pennies; otherwise,

he mints a groat into two pennies and one halfgroat. He spends one penny then with

probability 1. In general, once the agent runs out of pennies, he takes a larger coin

12To our best knowledge, the literature has not reported that adding a new denomination reduces
welfare in the model of Lee et al. [8]. But supplying a new coin itself can be costly; at least, it is
costly to produce and maintain the equipment. This cost is abstracted away in our model. Given
this cost, the optimal structure certainly depends on parameters related to the supply of coins; if a
denomination is rarely used (think of the imaginary 99-euro note or 3-cent coin), then it shall not
be supplied. While interesting, we do not pursue optimality in this line.
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current wealth 35 34 33 32 31 ...

prob. of spending
a penny (1d) 99.93% 100% 100% 100% 100% 100%

a halfgroat (2d) 0.07%

Table 3: Simulated spending sequence of a typical agent with average wealth (35) if
he keeps being a buyer in pairwise meetings.

to the mint in exchange for pennies to spend. Table 3 summarizes the above result.

Of course, when the agent starts with a larger w0, he is more likely to spend a coin

larger than the penny at first. For example, when w0 = 70 (only less than 0.002%

of the population has wealth greater than 70 in equilibrium), at the first period, the

agent carries into the decentralized market all types of coins and spends one halfgroat

with probability 90.52% and one penny with probability 9.48% (as in the case with

w0 = 35, the agent carries shillings and groats but does not spend those large coins);

in the subsequent periods, the probability to spend one halfgroat decreases and the

probability to spend one penny increases.

4.2 Welfare roles of different coins

To understand how adding a coin may improve average welfare, we first introduce

two notions of optimal meeting output. One is the buyer’s optimal consumption for a

meeting in a steady state (w, θb, θs, π), output when coins are divisible, i.e., the buyer

can transfer any amount of silver contained in coins he carries to the seller (but takes

the value function w as given); the corresponding payment is the buyer’s optimal

payment. Another is socially meeting optimal output q∗ ≡ argmax[u(q)− q]; observe

that an upper bound on

(1− β)−1
∑

θb(yb)θ
s(ys)[u(q(yb, ys))− q(yb, ys)] (27)

is obtained if q(yb, ys) = q∗ all (yb, ys) and that W in the steady state can be approxi-

mated by the term in (27) (W and the term in (27) are not exactly equal because some

silver is held as jewelry and there are costs to carrying coins). Let us use c(m) = (1)

as the reference structure and use adding the halfpenny as the example to understand

the welfare role of a small coin. We proceed by three steps.

Step 1. The upper part of Figure 1 displays distributions of meeting output

and payment and distributions of the buyer’s optimal consumption and payment for

c(m)= (1). Clearly, buyers in most meetings intend to have lower output and payment
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(a) Payment Distributions
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(b) Output Distributions
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(c) Wealth Distributions
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Figure 1: Upper: distributions of payment and output for c(m) = (1) and (1, 1/2),
and of buyer’s optimal payment and consumption. Lower: wealth distributions and
value functions for c(m) = (1) and (1, 1/2).

if they can divide pennies into smaller pieces. With a reduction in the silver content

of the smallest coin from 1 to 0.5, the agent benefits provided that the value function

(which determines the purchasing power of coins) is unchanged: he can spread his

consumption over more periods at a more individually efficient consumption level;

this is the partial-equilibrium consumption smoothing effect indicated in section 2.3.

Step 2. Now we use the step-1 partial-equilibrium effect to understand the general-

equilibrium effects from adding the halfpenny on the steady-state distribution and

value function. The lower part of Figure 1 displays the steady-state distributions

and value functions. After the halfpenny is added, there is some change in the value

function—the value of holding wealth z < M increases and the value of holding

z > M decreases. It is anticipated that adding the halfpenny has a greater benefit if
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z is smaller. But why does adding the halfpenny actually hurt for a large z? There

is a countering effect when the value function tends to move up; that is, the buyer’s

surplus-from-trade is reduced as the seller’s reservation value increases. The net effect

is positive (upward) for z below some level but it may be negative for z above another

level. It is also anticipated that the distribution should be more concentrated when

agents have an option to spend less than one penny (while the magnitude of the

concentration is quite striking).

Step 3. Building on the step-2 general-equilibrium effects, there are two distinct

perspectives for us to see why adding the halfpenny improves welfare. First, average

welfare by definition is the inner product of the distribution and value function. As

the value function is largely concave, the concentration of the distribution is the

main contributor behind the welfare improvement. Second, the change in the value

function may lead the amount of goods purchased by one penny to fall below unity

in most meetings; as a result, average welfare improves as output in most meetings

moves much closer to q∗—with c(m) = (1), average meeting output Q exceeds q∗ = 1

by 19% and adding the halfpenny draws Q 3% below q∗. Why does the amount of

goods purchased by one penny fall? This is because meeting output is decreasing

in the seller’s reservation value given the same amount of silver in a payment (for

c(m) = (1, 1/2), a majority of transactions still involve a one-penny payment and

some output slightly less than unity; see the upper part of Figure 1).

That with c(m) = (1), Q exceeds q∗ by 19% is consistent with the finding of

Kim and Lee [6]. That with c(m) = (1, 1/2), the halfpenny is not often involved

in change-giving may be attributed to our assumption that each agent knows his

type when making the portfolio choice in the mint. Although knowing one’s type in

advance may reduce inefficiency caused by one side of the meeting not being able to

give change, measured by ex ante welfare, the benefit may be limited. Why? Think

of an agent with the average wealth level in the equilibrium when agents do not

know their types in advance. It is always feasible for the agent to choose a portfolio

with only the smallest coins so that change-giving will not be a problem. But in

equilibrium, the agent does not choose such a portfolio; that is, any ex ante benefit

from further reducing the probability of not being able to give change is bounded

above by the extra cost from carrying more coins. Because the carrying costs are

small in our numerical exercises, it follows that ex ante benefit from reducing the

probability of not being able to give change is small. This small welfare-improving
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effect does not contradict to the significant welfare role of small coins: one result

pertains to that the agent intends to spend one halfpenny when the halfpenny is

feasible but he chooses to carry pennies; another pertains to that the agent desires to

spend one halfpenny but the halfpenny is not feasible.

Apparently, what the addition of the halfpenny can achieve cannot be achieved

by the addition of a large coin. Let us keep c(m) = (1) as the reference structure

and consider adding the halfgroat. The halfgroat improves average welfare by a much

different channel—it saves the carrying costs. With c(m)=(1), on average agents carry

35 coins but on average they only pass one gram of silver per meeting; see Table 2.

In other words, most agents carry a lot of silver in pennies not for the transaction

purpose; those agents cannot afford jewelry, a more attractive store of value yielding

direct utility. With c(m)=(2, 1), on average agents still pay one gram of silver per

meeting for transactions so on average carrying one penny still meets the transaction

purpose but, agents who rely on pennies as the store of value under the single-coin

structure can now turn to halfgroats. Indeed, on average agents carry 18 coins (one

penny and 17 halfgroats)—the size of their wallets reduces by almost 50%.13

4.3 The role of the meeting frequency F

We move on to examine how much the finding demonstrated above would be affected

by an increase in the meeting frequency F . We are interested in the increase in F

because it captures a fundamental change in the real economy of the relevant part of

history—advancement of commerce.

Table 4 displays statistics corresponding to those in Table 1 for F = 24. Compared

with Table 1, we observe two dramatic changes in Table 4. First, average meeting

output Q exceeds q∗ by a large margin—more than 100%—absent of small coins. This

is not surprising. An increase in F makes per unit of silver contained in coins more

valuable—it serves more rounds of transactions for a fixed time frame; so everything

else equal, there should be an increase in the purchasing power of a coin. Second,

13One may question why agents do not have an option to leave coins serving the store-of-value
purpose at home. Our model can accommodate this option. If we further assume that there is no
cost of leaving coins at home, then the welfare improvement from adding the halfgroat would become
much smaller. Realistically, people would prefer to keeping a smaller number of objects serving as
the store-of-value; for this preference, one may compare keeping a jug of cents with keeping a 500-
euro note at home. In this regard, our treatment is a simplified one that does not distinguish the
cost associated with coins being carried with the cost associated with coins not being carried.
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c(m) D P Q ∆w ∆c

single 1.000 0.476 2.142 − −
(2,1) 1.000 0.476 2.143 0.02% 0.01%

(4,2,1) 1.000 0.476 2.143 0.03% 0.01%

(12,4,2,1) 1.000 0.476 2.143 0.03% 0.02%

(1,1/2) 0.511 0.445 1.174 28.68% 15.55%

(1,1/2,1/4) 0.521 0.532 0.988 30.05% 16.28%

complete 0.521 0.531 0.988 30.13% 16.32%

Table 4: Steady-state statistics under F = 24.

consistent with the explanation given at the end of section 2.3, adding small coins

has far greater effects: the halfpenny improves average welfare by 28% and reduces

both the average payment and output by around 50%.

Let us concentrate on comparing what happens at F = 24 with what happens at

F = 12 after the halfpenny is added to the single-coin structure. When the penny

is the only available coin, one penny becomes so valuable at F = 24 that it can

induce most sellers to produce q = 2 and almost all buyers only spend one penny

per transaction. So buyers would choose to spend and consume much less if they can

divide pennies into small pieces than buyers at F = 12. As a result, the distribution

becomes more concentrated at F = 24 than at F = 12 after the halfpenny is added.

Of the most importance is that adding the halfpenny has a much stronger up-shifting

effect on the value function at F = 24 than at F = 12. Indeed, the effect is strong

enough to dominate the countering effect due to the rise in the seller’s reservation

value—the entire value function shifts upward after adding the halfpenny. In addition,

at F = 24, one halfpenny can be sufficiently valuable to induce most sellers to produce

q around unity and most buyers to spend one halfpenny per transaction; indeed, the

halfpenny dominates in the transaction volume and has the highest velocity when it

is available.14

What if F rises further? At F = 48, average meeting output moves to 2 under

c(m) = (1, 0.5). As one may perceive, this renders a great welfare role to the farthing.

Moreover, the farthing dominates in the transaction volume and has the highest

velocity after it is added to c(m) = (1, 0.5).

14If F declines, say, to 1, then the halfgroat dominates in the transaction volume and has the
highest velocity after it is added to the single-coin structure.
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4.4 Individual cost due to shortages of small coins

Here we turn to the individual statistics {δ(z)}z to illustrate the individual cost

due to shortages of small coins. Because halfpennies and farthings were main tar-

gets of public complaints about shortages for the part of history in concern, we use

c(m) = (12, 4, 2, 1) as the reference pre-shock structure. We refer to the structure

shock that adds the halfpenny as the halfpenny shock and the structure shock that

adds the halfpenny and farthing as the halfpenny-farthing shock. For the purpose

of comparison, we also examine the sixpence shock that adds a large coin, namely

mk = 6, to the reference structure.

The statistic for the sixpence shock is consistent with the finding of the welfare

role of large coins based on the steady-state comparison. Specifically, the δ(z) is

positive all z but bounded above by 0.001% at the baseline F , meaning that the

lifetime improvement of an agent who benefits the most from the sixpence shock is

offset by the costs to carrying 70 coins into the decentralized market once. So even

though filling in the gap between the shilling and groat benefits everyone, no one

would complain if the gap is left there.

Now we turn to the halfpenny and halfpenny-farthing shocks. Figure 2 displays

two sets of statistics {δ(z)}z in graphs for those two shocks at the baseline F ; a graph

in the figure is referred to as a δ(z) curve, with the wealth level z in the horizontal

axis and the change in the individual welfare δ(z) in the vertical axis. The two curves

in Figure 2 share two same patterns. First, the change in the individual welfare is

decreasing in his pre-shock wealth and the average statistics ∆w for these two shocks

(which can be inferred from Table 2) highly underestimate inconvenience felt by poor

people when coins in concern are in shortage.15 Second, adding small coins makes

rich agents worse off. This pattern is consistent with the steady-state comparison in

section 4.2 (see the lower part of Figure 1) and can be explained by the effect that

counters the consumption-smoothing effect discussed there.

When agents meet more frequently, the first pattern for the baseline F remains

and, consistent with the steady-state comparison, the second pattern disappears be-

15In our model, agents are all alike ex ante and, hence, an agent’s wealth status is transient. But
because agents trade in pairs, on average it takes a long time for an agent to transit from his current
wealth status to a somewhat different one; for example, for an agent with wealth z =1.2M , it takes
on average more than 5000 periods for his wealth level to fall to 0.8M under our chosen parameter
values. So while δ(z) is a snap shot by definition, it would indicate an agent’s inconvenience for a
much lengthy time frame according to his current status.
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Figure 2: Left axis: changes in individual welfare (δ(z)) under the halfpenny struc-
ture shock and under the halfpenny-farthing structure shock. Right axis: pre-shock
steady-state distribution.

cause the consumption-smoothing effect is the dominant factor for all agents. The

upper part of Figure 3 displays the {δ(z)} curve for the halfpenny shock at F = 24;

the bottom part of Figure 3 displays the {δ(z)} curve for the halfpenny-farthing shock
at F = 48. Those curves reveal universal unhappiness for shortages of small coins

as the meeting frequency increases. Universal unhappiness prevails even when the

farthing is available as long as the trade is sufficiently frequent; for example, if the

shock adds mk = 1/8 to the complete structure, then δ(z) ranges from 66.98% to

19.91% at F = 120.

The numbers attached to F = 120 for mk = 1/8, together with columns ∆w and

∆c in Tables 1 and 4 and Figures 2 and 3, deliver the main finding from the basic

model: when people meet more frequently, they strongly demand the smallest coin

to be smaller (and poorer people demand more strongly ) but their demand may not

be satisfied simply because there is a physical lower bound on how small a coin may

be.

5 Two extensions

This section presents findings from two extensions of the basic model.
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with F = 24 (upper); and the alternative farthing structure shock with F = 48
(lower).
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5.1 Responses to debasements

As documented by Rolnick et al. [17], following a debasement, there is a large increase

in the minting volume and new coins cocirculate with old by weight. Rolnick et al.

[17] refer to their findings regarding large minting volumes and cocirculation by weight

as the debasement puzzle—a puzzle based on the presumption that a bundle of old

coins are perfect substitute to a bundle of new coins with the same amount of precious

metal. This presumption implies that people should not melt old coins in the mint for

new coins if there are additional costs stemming from minting, which were minting

fees in history.

In our model, two bundles of coins with the same amount of silver need not

be perfect substitute. Given great inconvenience due to shortages of small coins

illustrated in section 4, it may be anticipated that agents in our model are attracted

to the mint to obtain new (lighter) pennies if the penny is debased. To explicitly

study how agents respond to debasements, now we let the coinage shock in section 2

be a debasement shock (i.e., we replace a structure shock with a debasement shock).

A debasement shock occurs at period 0 (as a structure shock) and it is represented

by a fixed period t̄ > 0, a set of integers {1, ..., J}, and a mapping d from J to the set

of integers. Here, J is the number of coins of the pre-shock structure being debased,

coin d(j) for each 1 ≤ j ≤ J in the pre-shock structure is debased, and mo
d(j) is the

amount of silver contained in coin d(j) in the pre-shock structure. The period t̄ is the

period for coins d(1), ..., d(J) in the pre-shock structure, to exit from circulation; this

exit period is a simplifying way to capture that in history, old coins did eventually

disappear for a variety of reasons (lost, deteriorated, etc) not considered in our model.

If t < t̄, then the set of individual portfolios is

Yt =
∏K

k=0{0, 1, ..., B/mk} ×
∏J

j=1
{0, 1, ..., B/mo

d(j)} (28)

and the set of portfolios feasible from minting is

Γt(y) = {y′ ∈ Yt :
K∑
k=0

mk(y
′
k − yk) +

d(J)∑
j=d(1)

mj(y
′
j − yj) = 0, yo′d(j) ≤ yod(j)}; (29)

in (28), a coin with silver content mk for some 1 ≤ k ≤ K is from the post-shock

structure c(m). If t ≥ t̄, then Yt and Γt(y) are defined by the same way as in the

pre-shock economy for c(m).

To stay focused, we study the penny-debasement shock and shilling-debasement
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1/2d 1d 2d 4d 6d 12d Jewel Total

Debasing ST 1.355 1.022 3.931 28.69 0.001 35

penny CV 0.972 0.135 0.071 1e−4 1.177

(by 50%) MV 0.317 0.334 0.459 0.377 1.487

Debasing ST 1.000 0.204 3.912 29.81 0.072 35

shilling CV 0.972 0.043 0.050 0.075 1.141

(by 50%) MV 0.252 0.203 0.974 1.085 2.514

Table 5: Steady states before and after the debasement shocks.

shock which debase the penny and the shilling by 50%, respectively, from c(m) =

(12, 4, 2, 1). Notably, a 50% debasement was not a norm in history. We choose 50%

debasements because it is straightforward to compare the lighter penny with the half-

penny and the lighter shilling with the sixpence (for lower-degree debasements, the

responding patterns presented below are maintained with less increases in minting

volumes). According to our formulation, the penny-debasement shock and the half-

penny shock both make the coin containing 0.5 units of silver available from the mint;

the coin containing one unit of silver is no longer available from the mint with the

former shock and is still available with the latter shock. We present our results with

t̄ = 50.

Table 5 reports the average stocks, circulation volumes, and minting volumes for

the two post-shock steady states; the statistics for the pre-shock steady state can

be found in Table 2. Following the penny debasement, much of the silver occupied

by jewelry is released to coins even though a new penny contains a less amount of

silver than an old penny; this is consistent with the movement of the stock of jewelry

following addition of small coins in Table 2 and is a sign that holding silver in money

is more attractable than holding silver in jewelry following the debasement. Following

the shilling debasement, only a tiny amount of silver occupied by jewelry is released;

this is consistent with the movement of the stock of jewelry following addition of large

coins in Table 2.

The penny debasement resembles the halfpenny shock and the shilling debasement

resembles the sixpence shock in welfare effects. When the penny is debased, δ(z)

ranges from 25.21% to −6.44%. When the shilling is debased, δ(z) is negative but

bounded below by −0.008%; the negative (but insignificant) welfare effect may be

attributed to the fact that old shillings are a more convenient store of value than new
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shillings.16

Following each shock, we observe cocirculation of old and new coins by weight

before old coins exit. Cocirculation by weight is consistent with what Rolnick et al.

[17] find; it is natural in our model because the silver content in each sort of coin is

public information. Indeed, the value of each coin in the equilibrium definition is a

function of the coin’s silver content. We have a “by tale” equilibrium if the function

is constant in the silver content and a "by weight" equilibrium otherwise. "By tale"
equilibria are eliminated by free minting: if a coin with two grams of silver happens

to be equally valued as a coin with one gram, people should mint the former coin into

two latter coins. But it is worth noting that even when each coin’s metal content is

public information, circulation by tale following debasement may present if examining

coins one-by-one is costly. Abstracted away from our model, this examination cost

may not be ignored if a transaction involves many coins; with this cost, circulation

by tale (by weight, resp.) can be an equilibrium outcome if the metal difference in

new and old coins is sufficiently small (large, resp.).

Because the mint does not supply old coins, one old coin may be more valued

than two new coins (i.e., the purchasing power of one old coin may be higher than

the purchasing power of two new coins in a meeting); but the premium of one old

coin over two new coins (weighted by the distribution of the seller’s portfolio) turns

out to be rather limited, never exceeding 0.01% along the transitional path.

Circulation of old shillings differs from circulation of old pennies in one aspect.

After the shilling is debased, old shillings get more and more circulated because people

can only get this convenient store of value from the decentralized-market trade. After

the penny is debased, old pennies get less and less circulated because new pennies

are good substitutes and more and more old pennies are melted in exchange for new

pennies. The different pattern is presented in Figure 4.

Following each shock, there is a sizable increase in the minting volume; see Figure

5. This is again consistent with what Rolnick et al. [17] find. It should not be

surprising that the penny debasement induces a significant minting response because

it provides coins much demanded in transactions. But a significant minting response

16The definition in (26) is not exactly applicable because values of w0 for two portfolios need not
be equal for two portfolios with the same wealth level. But if the two portfolios are in the support
of π0, then the difference in their values of w0 turns out to be rather limited. So the definition in
(26) provides a good approximation if we treat v0(z) as the average value of w0 for portfolios with
the same z.
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Figure 4: Circulation volumes (CV ) of coins following debasement shocks. Upper
row: debasing the penny from 1 to 1/2; bottom row: debasing the shilling from 12
to 6.
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Figure 5: Minting volume (MV ) responses following the debasement shocks. Upper
row: debasing the penny from 1 to 1/2; bottom row: debasing the shilling with from
12 to 6.

need not imply that a debasement provides coins much demanded in transactions;

applied to the shilling debasement, this is analogous to an observation from Table 2:

a larger minting volume need not imply that the coin is more useful in transactions.

5.2 High meeting frequency and usage of large coins

The main finding in section 4 is that welfare costs due to shortages of small coins

increase as the meeting frequency F increases. When F increases, agents have a

strong tendency to use the smallest coins. Little circulation of large coins would

cast some doubt on the finding, motivating us to extend the basic model with the

buyer-seller interaction in a meeting as follows.

A meeting in period t consists of N stages, indexed by n ∈ {1, ..., N}. Each

stage consists of three phases. At phase I, if the buyer and seller stay together,

each has an option to (endogenously) terminate the meeting. Once the meeting is

terminated, the buyer and seller are separated from each other for the rest of period
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Figure 6: Timeline of the buyer-seller interaction in a given period.

t, particularly implying no production following the termination. At phase II, the

seller can produce a good that is consumed by the buyer at the stage provided that

the meeting is not terminated. At phase III, there is an i.i.d. separation shock that

(exogenously) terminates the meeting with probability ρn, where ρn < 1 if N > n ≥ 1

and ρn = 1 if n = N . The buyer’s utility from consuming the bundle (c1, ..., cn),

n ≤ N , is
∑n

i=1 u(ci); the seller’s disutility from producing the bundle is
∑n

i=1 ci.

One interpretation of this buyer-seller interaction is that a period consists of multiple

days, goods in a meeting are time-indexed goods, and a random event may terminate

the buyer-seller interaction before the end of the period; e.g., a helper may clean the

house for his employer each day in a multiple-day period but the helper may be sick

after the first-day house cleaning.17

As in the basic model, the buyer makes a take-it-or-leave-it offer. Here an offer is

made at phase I of stage 1 before each agent chooses to terminate the meeting or not

and it is represented by (c1, ..., cN , l1, ..., lN), where cn ≥ 0 is the seller’s production

at phase II of stage n conditional on that the meeting has not been terminated at

the time and ln ∈ L(yb, ys) (see (6)) is the buyer’s payment conditional on that the

meeting is terminated after the seller produces the consumption bundle (c1, ..., cn)

but before cn+1. If the offer is accepted, then agents move to phase II of stage 1 and

17With this interpretation, we may follow Shi [23] to assume that the buyer needs a consumption
device to consume and he surrenders the device to the seller at phase n as a collateral if he comes
back at phase n + 1; in a more complete version, there may be another round of matching in the
period among agents who depart from their meetings by the end of phase n < N . An alternative
interpretation is that a period is short and goods in the meeting are physically distinct; e.g., the
helper may clean the house, farm the land, prepare food, etc. for his employer within a day but he
may be sick after the land farming.
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act according to the offer; otherwise the seller immediately terminates the meeting.

Even after the seller accepts an offer, has produced (c1, ..., cn−1), and stays together

with the buyer at the start of stage n > 1, he can choose to terminate the meeting

at phase I of stage n; if he does terminate, then he receives the payment ln−1. Thus

if the offer is accepted at stage 1 and neither agent terminates the meeting at stage

n > 1, then

µn = ρn

n−1∏
i=0

(1− ρi) (30)

with ρ0 = 0 is the ex-ante probability that the buyer consumes the bundle (c1, ..., cn)

and pays ln. Also, λn,n = ρn and λn,j = ρj
∏j

i=n(1 − ρi) for n < j ≤ N give the

probability that the meeting is terminated by the end of stage n ≤ j ≤ N conditional

on that the buyer and seller stay together at the start of stage n and no agent chooses

to terminate the meeting at any stage. In terms of wt+1, the buyer’s offer solves the

optimization problem

max
(c1,...,cN ,l1,...,lN )

N∑
n=1

µn

[
n∑

i=1

u(ci) + βwt+1(yb − ln)

]
(31)

subject to

N∑
j=n

λn,j

[
−

j∑
i=n

ci + βwt+1(ys + lj)

]
≥ βwt+1(ys + ln−1) all n, (32)

where ln ∈ L(yb, ys) and l0 = 0. The constraint (32) implies that the seller does not

have incentives to terminate the meeting at phase I of stage n.

The optimization problem (31) can be solved by backward induction. Suppose

(c∗1, ..., c
∗
N , l

∗
1, ..., l

∗
N) is a solution and that after (c∗1, ..., c

∗
n−1) has been carried out, the

buyer can revise the part of the offer that has not been carried out at phase I of

stage n before each agent chooses to terminate the meeting or not. An implication

of backward induction is that the buyer is to offer (c∗n, ..., c
∗
N , l

∗
n, ..., l

∗
N).

18 Hence

(c∗1, ..., c
∗
N , l

∗
1, ..., l

∗
N) is immune to the buyer’s redesign at each stage and we may

18That is, (c∗n, ..., c
∗
N , ι∗n, ..., ι

∗
N ) solves the problem

max
(cn,...,cN ,ln,...,lN )

N∑
τ=n

µτ

[
τ∑

i=1

u(ci) + βwt+1(yb − lτ )

]

subject to
N∑

j=τ

λτ,j

[
−

j∑
i=τ

ci + βwt+1(ys + lj)

]
≥ βwt+1(ys + lτ−1), n ≤ τ ≤ N,
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c(m) 1d 2d 4d 12d Jewel Total

Baseline

ST 0.995 1.955 3.826 21.80 6.426 35

CV 0.901 1.251 1.004 0 3.156

MV 0.310 0.571 1.105 0.940 2.926

Table 6: Steady-state statistics of the modified model.

alternatively assume that the buyer makes an offer (cn, ..., cN , ln, ..., lN) at phase I of

each stage n. Because (c∗1, ..., c
∗
N , l

∗
1, ..., l

∗
N) satisfies the seller’s participation constraint

at each stage, carrying out the buyer’s offer here does not seem to require commitment

from the buyer and seller more than commitment for carrying out the buyer’s offer

in the basic model.

Turning to quantitative properties of this extension, we set F = 72, N = 3, and

ρ1 = ρ2 = 0.1; that is, people meet once every 5 days and 10% of meetings lasts

for 1 day, 9% for 2.5 days, and 81% for 5 days. The steady-state nominal GDP is

around 96 pence per year. Table 6 reports usages of coins for c(m) = (12, 4, 2, 1).

The shilling is purely a store of value. All other three coins are actively used in

transactions; the penny has the highest velocity. Figure 7 displays δ(z) under the

halfpenny shock. The very key behind the patterns in Table 6 and Figure 7 is the

following feature in the buyer’s equilibrium offer which also applies to other values of

N , {ρn} and F experimented: the payment ln is roughly proportional to n. Because

the ex-ante probability for the buyer to pay ln is equal to µn (see (30)), it follows that

independent of the trading frequency, small coins do not dominate in transactions

(Table 6) even though small coins have the strong consumption-smoothing effect as

in the basic model and shortages of small coins remain very costly (Figure 7).

To further think of the role played by the sequential realization of randomness in

the extension, it helps to consider the setting when the number of stages n for each

agent to stay together with his meeting partner (if neither chooses to terminate the

meeting) is a random variable whose realization is revealed to the two agents at the

start of their meeting.19 Now a buyer’s decision has a cutoff-point property: he skips

any trading in the present meeting if the realization of n does not reach some cutoff

point. Cutoff points are largely determined by the random variable n and the meeting

frequency. When the meeting frequency is low, the buyer’s spending may vary with

where ln−1 = l∗n−1.
19Such a setting is quantitatively equivalent to the setting with n fixed at one and with a random

taste shock to the buyer’s utility realized at the start of the meeting.

35



0.5M  M  1.5M 2M  2.5M

Silver wealth (z)

0    

+50% 

+100%

W
el

fa
re

 c
h
an

g
e

(z): halfpenny shock

Figure 7: Changes in individual welfare (δ(z)) under the halfpenny structure shock,
with F = 72, N = 3 and ρ1 = ρ2 = 0.9.

the realization of n after the cutoff point is reached. But when the meeting frequency

is high, the buyer only spends one smallest coin in a meeting.

6 Discussion

Here we discuss first our model and next the related literature.

6.1 Our model: the role of M

In section 4, we keep the per capita silver stock M at 35; the main finding is that

shortages of small coins are highly costly and the cost goes up dramatically if the

meeting frequency increases. How much would the finding be affected if we increase

M? Table 7 displays statistics corresponding to those in Table 1 for F = 12 (the

baseline) and M = 70. Comparing the two tables, one may observe the following.

First, the quantity theory holds in that the average meeting price more or less doubles

as M doubles for each c(m). Second, increasing M moves aggregate output much

closer to q∗ for c(m) without small coins. Third, the marginal contributions by large

coins to average welfare seem not much sensitive to the change in M . Fourth, after M
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c(m) D P Q ∆w ∆c

single 1.895 1.866 1.027 − −
(2,1) 1.894 1.866 1.027 0.02% 0.02%

(4,2,1) 1.894 1.866 1.027 0.03% 0.03%

(12,4,2,1) 1.895 1.866 1.027 0.04% 0.04%

(1,1/2) 1.925 2.005 0.969 0.71% 0.74%

(1,1/2,1/4) 1.987 2.085 0.962 0.72% 0.75%

complete 1.978 2.078 0.961 0.75% 0.78%

Table 7: Steady-state statistics: F = 12,M = 70.

increases, small coins remain to make much more significant marginal contributions

than large coins but their contributions do decline.

These observations may be understood on the basis that the penny under M = 70

is largely equivalent to the halfpenny under M = 35; that is, the increase in M is an

effective small-coin provision mechanism. If we are free to choose F and M , then we

are free to let small coins be welfare significant or not. For example, if we keep F at

12, the marginal contribution to average welfare by small coins is bounded above by

0.003% when M reaches 140; but even if we keep M at 140, average meeting output

moves up to 2 and adding the halfpenny has ∆w above 20% again (as in Table 4)

when F reaches 72. Realistically, the increase in F would be the dominant factor in

the commodity-money era. There was a rather limited room for per capita silver to

grow in the pre-modern time. On the other hand, although transacting a few times

per month may approximate a fifteenth-century economy, advancement of commence

would inevitably push the meeting frequency far beyond this range.20 In summary,

while the main finding in section 4 is cast in a specific historical period, the basic

force underlying the finding would become stronger and, the provision of small coins

would become a more serious problem for years ahead of that specific period.

Fiat money provides a perfect solution to the small-coin problem as long as the

government can commit to not overissuing fiat money. In our model, fiat money

corresponds to the setting that the mint produces coins with a durable material whose

supply can be arbitrarily large (silver, then, must all be used for jewelry); fiat money

dominates commodity money because of two factors. First, fiat money releases all

20The U.S. per capita silver stock was around 800 grams in 1938 and it may not be too restrictive
to use 400 grams as an bound for the pre-modern time; see Patterson [13]. This level of silver stock
is far from sufficient to bring down the value of small coins when agents transact once per day.
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silver to the society for the jewelry service. Second, as noted in section 2.3, fiat money

is not subject to any upper bound on the supply of the money-producing material.

The second factor is the dominant factor when the meeting frequency is high. These

two factors should remain valid when the standard formula is applied, i.e., only small

coins become fiat and small token coins can be converted to large silver coins (see

Cipolla [3]). To run the standard formula, the mint must hold sufficient reserves in

silver. How many reserves are sufficient is an equilibrium outcome. It is left for the

future research to explicitly compute a standard-formula model.

6.2 Our model: two missing aspects

Two realistic aspects missing from our model are worth noting. First, we assume

minting is free for the purpose to reduce the dimension of the state space. Mints in

history charged people to cover the labor and material costs and collect seigniorage.

Because it was much more costly to produce farthings than shillings, mints might

not produce farthings as demanded given minting fees permitted by monarchs; see,

Redish [14, p. 113]. That is, the minting fees would be an important factor for

shortages of small coins.

Second, there are no intrinsic heterogeneous characteristics in our model. Strictly

speaking, agents in our model only match some class of people in a western European

economy in the late middle ages. The economy at that period had the bimetallic

system—gold was mostly used in high-value transactions and silver was mostly used

in the daily life. The system may be partially contributed by intrinsic heterogeneous

characteristics of people (e.g., inherited privileges and skills for more-profitable oc-

cupations) that divided people into different classes. A small class of people were

rich overall; they would be more involved on market transactions and procure a large

proportion of GDP; and they would hold most of gold coins. Agents in our model

correspond to people outside this rich class, people who were less involved on market

transactions and mainly relied on silver coins for their market transactions.21

For people outside the rich class, our model may overestimate welfare significance

of small coins because their consumption did not all come from monetary transactions.

21This explains our target of the annual nominal GDP per capita at 100 pence for the exercise in
Table 6. For the part of history in concern, the annual nominal GDP per capita in England fell in
the range from 200 to 400 pence. But 100 pence seems a reasonable target for the non-rich class: if
5 agents in the model count for a household, then the household annually receives monetary incomes
around 500 pence, close to the historical data for the non-rich class.
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Suppose that monetary transactions only contributed to one third of the consumption

and that the consumption of goods and services from monetary transactions entered

into the person’s utility function as an object distinct from the consumption of goods

and services from other means (e.g., barter, credits, and self production); then, one

may discount a welfare number by 2/3 to get a more realistic estimate, which is still

quite significant. But our model may underestimate welfare significance of small coins

for those people because the rich class (excluded from our model) would nonetheless

carry a significant stock of silver coins and, hence, make shortages of small silver coins

a more severe problem for the non-rich class as a whole.

To include the minting fees, we may assume that each agent incurs some amount of

disutility to obtain a unit of coin and that there is an upper bound on the aggregate

minting volume for each type of coin; the bound may be exogenous but it can be

endogenous and a binding bound describes partial shortages of small coins in history.

To accommodate intrinsic heterogeneous characteristics, we may follow Wallace and

Zhou [32] by assuming that there are two types of agents who permanently differ

in productivity as sellers. Although we do not see a reason for either extension

to overturn the main finding, we do anticipate new insights from these extensions.

One may examine how a monarch should set minting fees if he intends to maximize

seigniorage and how the individual cost due to shortages of small coins depends on

his class and his wealth status. Because the state spaces increase dramatically, these

extensions are much more challenging to analyze and left for the future work.

6.3 The related literature

In the economic literature, a few papers study shortages of coins or small coins with

matching models. Wallace and Zhou [32] study a model with a unit upper bound

on money holdings and with some agents less productive than others; they identify a

shortage of coins with the concentration of wealth in steady state.

Kim and Lee [6] compare the steady-state aggregate welfare in a model with one

sort of coins in fiat money with the steady-state aggregate welfare in a commodity

money version of that model; they identify a shortage of small commodity-money coins

with a part of the welfare difference contributed by that commodity-money coins are

more valuable than fiat-money coins. Lee and Wallace [7] compare the steady-state

aggregate welfare in a model with one sort of coins in fiat money by varying the size

39



of the coin; they include the cost of maintaining monetary objects in their analysis;

and they conclude that medieval Europe might set the size of the penny right (we

suspect that poor agents in their model should get great improvements if the size of

the penny is reduced).

Redish and Weber [15] study a model with multiple monetary objects. They build

a bimetallic system into the model of Lee et al. [8]: gold and silver coins, respectively,

are large and small coins while quantities of gold and silver coins are fixed because

gold and silver are distinct metals and because there is no jewelry. Focusing on steady-

state comparison, Redish and Weber [15] identify a shortage of a sort of coins with the

improvement in the steady-state aggregate welfare when this coin is added; they find

that the shortage of small coins can exist. While their model is similar to ours, their

parameterization is different. Most importantly, they work with much higher degrees

of indivisibility of money and much lower levels of meeting frequency: averages of

all coin holdings are no more than 10 and there is one meeting per year when the

annual discount factor is 0.9. While a low average of coin holdings tends to strengthen

the welfare loss due to shortages of small coins, the low meeting frequency appears

powerfully enough to prevent the effect from standing out in their exercises. In their

model, there is a probability for a meeting to be a non-trade meeting; varying the

trading probability in their model delivers implications qualitatively consistent with

varying the meeting frequency in our model, but that variation seems not enough to

offset the influence of the low meeting frequency to yield implications quantitatively

strong as ours.

Redish and Weber [16] study the essentially same model as we study with two

sorts of silver coins. They again focus on steady-state welfare comparison and apply

parameters with a low average holdings of coins and a low frequency of meeting. The

findings are largely in line with findings in Redish and Weber [15].

As Kim and Lee [6], Lee and Wallace [7], and Redish and Weber [15, 16], we use

a matching model to draw quantitative implications of indivisibility of money for the

historical commodity-money system. Different from these authors, we calibrate the

coinage structure more closely to the relevant history, explore the meeting-frequency

dimension, and go beyond steady-state comparison. Going beyond steady-state com-

parison allows us to quantify an individual’s inconvenience due to a shortage of some

coins. Our novel contribution lies in (i) demonstrating that the individual inconve-

nience can be strikingly strong under parameters that do not exaggerate the degree
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of indivisibility, (ii) illustrating that the poor can experience much more inconve-

nience than the rich when the poor and rich are defined by their wealth status,22

(iii) relating the inconvenience to the consumption-smoothing role of small coins and

commercial advancement, (iv) showing that the inconvenience can persist even when

large coins are substantially used in transactions, and (v) offering an explanation for

the debasement puzzle based on the demand for small coins.

Sargent and Velde [20] have ignited the recent interest in small coins in particular

and commodity money in general. Their formal analysis is based on the model of

Sargent and Velde [19], which replaces cash and credit goods in the cash-in-advance

model of Lucas and Stokey [10] with penny and dollar goods—penny goods can only

be bought with pennies (small coins) while dollar goods can be bought with dollars

(large coins) and pennies. Sargent and Velde identify a shortage of pennies with a

binding penny-in-advance constraint, occurring when pennies depreciate relative to

dollars; but, as noted by Wallace [31], users of the Lucas-Stokey model usually do not

interpret a binding cash-in-advance constraint as a shortage of cash. A reader may

observe that jewelry in our model resembles bonds in some cash-in-advance model;

that is, jewelry has a higher rate of return than coins but is assumed to be illiquid.

This is a valid observation. Nonetheless, different from the Sargent-Velde model, our

model does not impose a coin-specific constraint for any sort of coin; moreover, our

main finding holds even if jewelry does not yield direct utility (i.e., if money is fiat).

There is a small economic literature that tackles the debasement puzzle. In a cash-

in-advance model, Sargent and Smith [18] assume that new and old coins circulate by

tale. Under this assumption, agents bring all old coins into the mint in exchange for

new coins. On the empirical ground, Rolnick et al. [17] argue that by-tale circulation

violates facts documented in the debasement puzzle and that by-tale circulation would

have induced a much larger minting volume than observed (data indicate that only a

portion of old coins were recoined). In matching models with one unit upper bound

on coin holdings, Velde et al. [30] and Li [9] use side payments offered by the mint as

incentives for people to bring in old coins in exchange for new coins at a one-to-one

rate.

Although minting fees are zero in our model, there are additional costs for an agent

to melt old pennies for new pennies—it is costly for the agent to carry more monetary

22Relying on steady-state comparison, Redish and Weber [15] define the poor and rich by
exogenously-given productivity level to examine the cross-type effects of adding new coins.
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objects. In fact, the responding patterns in section 5.1 do not change if agents pay

some positive minting fees at the first few periods in the post-shock economy, with

minting fees in the disutility form as discussed in section 6.2 (positive fees in the first

few periods have limited effects on the dimension of the state space). This exercise

is consistent with the finding of Rolnick et al. [17] that there tended to be a period

with higher seigniorage rates following a debasement.

7 Concluding remarks

Commodity money occupies most part of the monetary history. Compared with the

prevailing fiat-money system, the historical commodity-money system is primitive

in that its monetary service seems much constrained by the physical properties of

precious metals such as scarcity, portability, divisibility, and recognizability. Con-

ventionally thought to be critical, these properties are hard to place in models that

many economists are used to and, hence, far from sufficiently explored. Through

an off-the-shelf model, our paper demonstrates that the practical indivisibility of pre-

cious metals may imply a significant cost for the historical commodity-money system.

Plausibly, this cost contributed to the experimentation with a variety of imperfect

substitutes to small coins made from precious metals before a commitment device

other than precious metals to prevent over-issuance emerged and the final triumph

of fiat money after.23 On the flip side, our paper suggests a reason for one to recon-

sider commodity money in the presence of the new money-making commodity that

is practically divisible and has all other nice physical properties (e.g, bitcoin).

23The imperfect substitutes included billon coins, copper coins, pieces cut from coins, foreign coins
with less metal content, etc.; see Redish [14, ch 4] for problems with billon coins and copper coins.
The standard formula for the small-coin provision prescribes issuing token coins convertible to some
precious metal. But convertibility needs commitment. When the state commitment was somehow
in place, a society adopted presumably convertible token coins and large-denomination notes. The
presumed convertibility finally phased out but the state commitment somehow keeps over-issuance
in check.
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Appendix

A Proof of Proposition 1

The proof applies the standard fixed point argument. For existence of an equilibrium

for a given π0, it is routine to (i) construct a set S that is compact in the product

topology and an element of which is a sequence {wt, θ
b
t , θ

s
t , πt+1}∞t=0, (ii) construct a

mapping F from S to S that is implied by the definition of equilibrium and whose

fixed points are equilibria, and (iii) verify that all conditions for the application of

Fan’s fixed-point theorem are satisfied. So there exists an equilibrium. To show that

this equilibrium is a monetary equilibrium, suppose by contradiction the opposite.

Without loss of generality, suppose that some agent holds silver wealth B at date 0

and all his wealth is in jewelry. Consider two options of this agent when he is a buyer:

minting one unit of the smallest coin and no minting any coin. For the first option,

his expected payoff is bounded below by

−γ + (1− 0.5M

B −m
)u[

β (v(B)− v(B −m))

1− β
] +

β

1− β
v(B −m).

Notice that 1 − 0.5M/(B − m) is a lower bound on the measure of sellers whose

wealth levels in silver do not exceed B − m and the agent can receive at least

β (v(B)− v(B −m)) /(1− β) amount of the good from such a seller. For the second

option, his expected payoff is v(B)/(1−β). But then (12) implies the first option has

a higher payoff, a contradiction. Existence of a monetary steady state can be proof

by essentially the same argument.

The proof technique here resembles the one in Taber and Wallace [25] in that the

non-monetary equilibrium can be ruled out as a candidate for the fixed point because

the money-producing material yields direct utility.

B Numerical algorithms

B.1 Computing a steady state

The algorithm to compute a steady state is essentially an iteration of the mapping

that defines the steady state. To begin with, vectorize the K + 1-state space into a

one-dimensional state, and define the value vectors {w, g} and distribution vectors
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{θ, π}, θ = (θb, θs), accordingly. Denote the total possible number of states as S.

1. Begin with an initial guess {w0, h0, θ0, π0}, where π0 and θ0 are consistent with

the total silver stock M .

2. Given post-minting value hi and pre-minting distribution πi from i-th iteration,

solve the problem (3), and use the solution to update pre-minting value wi+1

and post-minting distribution θi+1 .

3. With wi+1 and θi+1, solve the problem as described in (4). Record the terms of

trade of each relevant pairs, and update hi+1 and πi+1 accordingly.

4. Repeat step 2-3 until the convergence criterion is satisfied: ∥wi+1 − wi∥ <

10−6, ∥hi+1 − hi∥ < 10−6 and ∥θi+1 − θi∥ < 10−8, ∥πi+1 − πi∥ < 10−8.

B.2 Computing a post-shock equilibrium

The computation for a post-shock equilibrium is essentially about iterations on the

series of Ψ ≡ {wt, ht, θt, πt+1}Tt=1, ht = (hb
t , h

s
t) and θt = (θbt , θ

s
t ), where T is the num-

ber of periods it takes for the economy to reach a new steady state. Before computing

the transition paths, we first need to compute the post-shock steady state using an

algorithm similar to B.1, with the change that options of portfolios containing old

coins are unavailable at the mint. Denote this steady state as {wT , hT , θT , πT+1}. We

also have to translate the distribution from the pre-shock steady state, into the begin-

ning distribution in the debasement environment, denote the beginning distribution

as π1.

1. Take an initial guess Ψ0 ≡
{
w0

t , h
0
t , θ

0
t , π

0
t+1

}T

t=1
, with w0

T = wT .

2. Start from the last period T . Given wT and θiT , solve the pairwise bargaining

problem as described in (4), and get hi
T . Record the implied Markov transition

matrix as Λi
T . Use hi

T and πi
T , solve the problem of minting, and get wi

T−1

accordingly. Record the implied Markov transition matrix as Υi
T . Then use

wi
T−1 and θiT−1, repeat the previous procedure for problems in period T − 1.

Finally, we will have a new series {wi
t, h

i
t}

T
t=1. And then use {Λi

t,Υ
i
t}

T
t=1 and π1

and generate a new series of distributions
{
πi+1
t , θi+1

t

}T

t=1
.

3. Now use
{
πi+1
t , θi+1

t

}T

t=1
and wT , repeat Step 2 and get

{
πi+2
t , θi+2

t

}T

t=1
.
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σ c(m) D P Q ∆w ∆c

0.5

single 1.988 2.626 0.766 − −
(1,1/2) 1.974 2.654 0.752 0.63% 0.24%

(1,1/2,1/4) 1.973 2.661 0.749 0.82% 0.32%

1.0

single 1.006 1.105 0.977 − −
(1,1/2) 0.998 1.268 0.804 3.49% 3.34%

(1,1/2,1/4) 1.003 1.305 0.780 4.11% 3.94%

1.5

single 1.000 0.655 1.697 − −
(1,1/2) 0.598 0.782 0.847 24.82% 70.15%

(1,1/2,1/4) 0.666 0.848 0.800 29.86% 92.26%

Table 8: Steady-state statistics under various σ; ω = 0.2.

4. Repeat 2-3 until the convergence criterion is met: maxt
(∥∥πi+1

t − πi
t

∥∥) < 10−8 ,

maxt
(∥∥θi+1

t − θit
∥∥) < 10−8, maxt

(∥∥wi+1
t − wi

t

∥∥) < 10−6, and maxt
(∥∥hi+1

t − hi
t

∥∥) <
10−6.

C Robustness check for σ

Here we report part of the robustness check regarding the parameter σ. To accom-

modate the values of σ no less than unity, we set u(x) = [(x+ ω)1−σ − ω1−σ]/(1− σ)

(for σ = 1, u(x) = ln(x+ ω)− ln(ω)), where ω > 0. The exercise the one in Table 1

with adding smaller coins to single-coin structure under σ = 0.5, 1, and 1.5, with ω

fixed at 0.2. The results are summaries in Table 8 reports; the welfare implications

of small coins are consistent with the discussion at the end of section 3.1.
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